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1 220718

1.1 The Projective Space

Recall the projective space, the space of lines through origin in Cn+1.

Pn = CPn = Cn+1 \ {0}/C×.

This is a complex n-dimensional manifold, which is also a real 2n-dimensional oriented closed

manifold. Few first remarks:

• When n = 1, then P1 = S2 is a sphere.

• For V ⊂ Cn+1 a linear hyperplane (i.e., dimension n linear subspace), then we also have

a subset H = P(V ) ⊂ Pn, by the image of the natural quotienting Cn+1 \ {0} → Pn.

It is also conventionally called a hyperplane in Pn.

• The space Pn has the natural homogeneous coordinate [X0 : X1 : . . . : Xn], which

decomposes Pn as

Pn = {[X0 : X1 : . . . : Xn] : X0 6= 0} ∪ {[0 : X1 : . . . : Xn]}

= {[1 : x1 : . . . : xn] : xi ∈ C} ∪ Pn−1 = Cn ∪ Pn−1.

Here, this Pn−1 is called the hyperplane at infinity, and its complement Cn is called

the affine plane. Sketch of their configurations:

X1, . . . , Xn

X0

1
Cn

(points of Pn−1)

Remark. A differential form on Pn is thus written by either

(i) C×-invariant form on Cn+1 \ {0}, or

(ii) written on each affine plane Cn, but compatible with transitions.

An example of the first kind is
dX0

X0
. An example of the second kind is the Fubini–Study

metric ωFS : on an affine plane {Xi 6= 0} with coordinates (x0, . . . , x̂i, . . . , xn), we define

ωFS =
1

2
ddc log

1 +
∑
j 6=i

|xi|2
 .
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• For the homologies of Pn, we have (recall that Pn is a 2n-manifold)

Hi(Pn;Z) =

Z (i = 0, 2, . . . , 2n),

0 (else).

Here, each H2k(Pn;Z) is generated by [Pk], where P1 ⊂ P2 ⊂ . . . ⊂ Pn−1 ⊂ Pn are

standard copies of Pk’s.

Remark. The notation [Pk] is for the image of any (k+1)-dimensional linear subspace

of Cn+1. This is well-defined, since any two such images are homologous to one another.

We specifically name the class [Pn−1] as the hyperplane class and also may denote [H]

for it. A line in Pn refers to a linear copy of P1 ⊂ Pn.

• (Dual view) The Fubini–Study metric ωFS is Poincaré dual of the hyperplane class

[H]. This is one of ‘the’ Kähler class of Pn.

Remark. To elaborate on the Poincaré duality, we think of the dual class PD([H]) ∈
H2(Pn;Z) = Hom(H2(Pn;Z),Z) by

H2(Pn;Z)→ Z

[X] 7→ [X].[H],

the algebraic intersection number between the curve X and the hyperplane H. That

[ωFS ] = PD([H]) means we have the identity

[X].[H] =

ˆ
X

ωFS ,

the integration of a 2-form on a (closed) 2-manifold X. In fact, we have PD([H1 ∩
. . . ∩ Hr]) = [ωFS ]r. We thus observe that, via Poincaré duality, we have algebraic

intersection • corresponding to the wedging ∧.

The above observations conclude the cohomology ring isomorphism

H•(PN ;Z) = Z[ωFS ]/(ωn+1
FS = 0).

1.2 Projective Varieties

Let C[X0, . . . , Xn](d) be the linear space of homogeneous polynomials of degree d. That is,

the set of polynomials F ∈ C[X0, . . . , Xn] such that

F (λx0, . . . , λxn) = λd · F (x0, . . . , xn).

For F ∈ C[X0, . . . , Xn](d), the set

Z(F ) := {[X0 : . . . : Xn] ∈ Pn : F (X0, . . . , Xn) = 0}

is well-defined; this is a feature which is only admitted for homogeneous polynomials.
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Definition 1.1. A projective variety is a set of the form Z(F1, . . . , Fm) =
⋂m
i=1 Z(Fi) for

some homogeneous polynomials F1, . . . , Fm (possibly with various degrees).

Any projective variety, as a closed subset of Pn, is compact. Some adjectives for projective

varieties:

Definition 1.2. A projective variety X is

• a hypersurface of degree d, if X = Z(F ) for some F of homogeneous of degree d.

• smooth if X is also a manifold (i.e., a submanifold of Pn).

By Implicit Function Theorem, the projective variety X = Z(F1, . . . , Fm) is smooth of

codimension m iff for each a ∈ X, the m× (n+ 1) matrix(
∂Fi
∂Xj

(a)

)
i,j

has rank m. This smoothness criterion is generic, in the space of all degree d hypersurfaces.

Example 1.3. Let F (X0, . . . , Xn) = Xd
0 + · · ·+Xd

n, with d ≥ 2. The variety Z(F ), called

(degree d) Fermat hypersuface, is smooth. Indeed, the matrix(
∂F

∂Xj

)
=
[
dXd−1

0 dXd−1
1 · · · dXd−1

n

]
= 0

iff X0 = . . . = Xn = 0 (which does not define any point in the projective space).

There are two themes of the study of projective varieties.

Theme 1 The main property that distinguishes the topology of a smooth projective r-

dimensional variety X among all smooth 2r-dimensional closed oriented manifold is that

- X comes with an inclusion map i : X ↪→ Pn, and

- the classes i∗ωkFS ∈ H2k(X;Z) are found. Equivalently, we find the classes

[X ∩H] ∈ H2(dimX−1)(X;Z),

[X ∩H ∩H ′] ∈ H2(dimX−2)(X;Z),

· · ·

with H,H ′, . . . a generic choice of hyperplanes.

Theme 2 The nature of solutions of polynomial equations are governed by the topology

of the zero sets.

Example 1.4. Recall the Fundamental Theorem of Algebra: any nonconstant f ∈ C[z] has

(deg f) zeroes, counted with multiplicities. (So f(z) = z3(z − 1)2 has 5 zeroes 0, 0, 0, 1, 1.)

So for instance, x2 = a has 2 solutions, unless a = 0 where we have a double solution.

Such an observation may extend to the curves in P2, as discussed below.
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1.3 Complex Curves in the projective plane

Question 1.5. How many points (x, y) ∈ C2 are common solutions to

7x3y − (4π + i)xy + 2y5 = 0, x7 + y3 − xy2 = 0?

To answer this, we follow the steps below.

1. Homogenize the polynomials. For the question above, define

f(X,Y, Z) = 7X3Y Z − (4π + i)XY Z3 + 2Y 5,

g(X,Y, Z) = X7 + Y 3Z4 −XY 2Z4.

2. Observe that putting Z = 1, we get back to the original locus. All new intersection

points are coming from {Z = 0} = P1 ⊂ P2.

So we have lifted the intersection problem of complex curves Z(f) and Z(g) within

P2.

3. We ask,

(a) What is |Z(f) ∩ Z(g)| =? Is the intersection transverse?

(b) For which genus g we can say Z(f) ∼= Σg? (Will show that g = 1
2 (df − 1)(df − 2)

in the next lecture, where df = deg f .)

For the first question, we split into some cases. When f, g have a (nonconstant) common

factor, i.e., f = αβ and g = αγ, then as Z(f)∩Z(g) ⊃ Z(α), we have an infinite intersection.

But otherwise, there is a theorem that algebraically counts the intersection:

Theorem 1.6 (Bezout). Suppose f, g ∈ C[X,Y, Z] are homogeneous of degrees d1, d2 respec-

tively. Assume f and g have no common factor. Then Z(f)∩Z(g) is finite, and has d1d2 ele-

ments counted with multiplicities. For generic f, g, we furthermore have |Z(f)∩Z(g)| = d1d2.

Proof. First, we show the ‘linear Bezout theorem.’ As Z(f) ⊂ P2 is a closed manifold, we

have its homology class, [Z(f)] ∈ H2(P2;Z), homologous to r[H] for some r ∈ Z.

For a generic line L ⊂ P2, |Z(f)∩L| = d1; if counted with multiplicities, this intersection

equals d1. For example, if we set L = P1 = {X = 0} the line at infinity, then the intersec-

tion counts the zeroes Z(f(0, Y, Z)) ⊂ P1
Y Z , which reduces to the question that how many

solutions do we have for f(0, 1, z) = 0 (for generic f).

On the other hand, one has the algebraic intersection computed as (with L generic)

[L].[Z(f)] = |L ∩ Z(f)|,
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since for complex submanifolds A t B intersecting transversally, the sign of each intersection

locus is 1. As discussed earlier, this number equals to

= deg f.

But we also know that [Z(f)] = r[L]. Thus [L].[Z(f)] = r([L].[L]) = r. (Note that any

(nonequal) two lines in P2 meets at a unique point!) Therefore [Z(f)] = (deg f)[L] follows.

For the general case, we first find the algebraic multiplicity

[Z(f)].[Z(g)] = d1[L].d2[L] = d1d2.

If f, g were generic, then Z(f) t Z(g), so |Z(f) ∩ Z(g)| = [Z(f)].[Z(g)] = d1d2 also follows.

Example 1.7. For our example case,

f(X,Y, Z) = 7X3Y Z − (4π + i)XY Z3 + 2Y 5,

g(X,Y, Z) = X7 + Y 3Z4 −XY 2Z4,

Bezout’s theorem thus gives [Z(f)].[Z(g)] = 5 · 7 = 35. Furthermore, Z(f) t Z(g) in this

case, because the common solutions to f = 0, g = 0, and “

[
∇f
∇g

]
has rank 1” does not have

any nonzero solution. (Programs like Macaulay2 helps us to verify this fact.)

Finally, we think of the points Z(f) ∩ Z(g) within P1 = {Z = 0}. It turns out that

f(X,Y, 0) = 2Y 5 = 0 and g(X,Y, 0) = X7 = 0 has (X,Y ) = (0, 0) as the only common zero,

so we do not need to take care of it.

2 220720

We continue about the following

Question 2.1. Let Z(F ) ⊂ P2 be a degree d smooth projective plane curve, which is a

closed oriented 2-manifold. What is its genus?

A somewhat related question is this. Think of the plane curve y2 = x3−3x+1, an elliptic

curve, which is known to be isomorphic to a torus Σ1. But in its real picture, we only see

some circles (including the point [0 : 1 : 0] at infinity). What happened?
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Theorem 2.2 (Degree-Genus formula). Let C = Z(F ) be a smooth degree d ≥ 1 curve.

Then Z(F ) ∼= Σg, where g = 1
2 (d− 1)(d− 2).

The values of g for first d’s goes as follows: g : 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, . . .. So,

• for d = 1, when C is a line P1, we have C ∼= S2.

• for d = 2, when C is a conic, this is also ∼= S2.

• for d = 3, when C is a cubic curve, this has the shape of a torus.

• for d = 4, when C is a quartic curve, this appears as a genus 3 surface.

Recall that the Fermat curves of various degrees are generic examples of smooth planar

curves.

Remark. Most algebraic curves (projective Riemann surfaces) C are not planar, i.e., does

not admit an embedding C ↪→ P2. The degree-genus formula provides one of the obstructions;

so say for genus 5 curves, as there is no d such that 1
2 (d − 1)(d − 2) = 5, we fail to have a

planar embedding. (Of course there may be bigger projective spaces that can contain such

one.)

Even if the degree-genus issue is cleared (which admits us to have a topological embedding

C ↪→ P2 with a complex submanifold image), whether we can embed into P2 really depends

on the complex structure that C carries. That is, planar curves is a distinguished subset of

the moduli Mg of closed genus g surfaces.

Real curves Suppose F ∈ R[X,Y, Z](d), i.e., F has real coefficients. Think of the complex

conjugation σ y P2, whose fixed points are Fix(σ) = RP2. Obviously we have Z(F ) invariant

under σ, with its fixed locus Fix(σ|Z(F )) = Z(F ) ∩ RP2. We can view this as an order 2

diffeomorphism on Z(F ) = Σg as well.
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For instance, if F = Y 2Z −X3 + 3XZ2 − Z3 (so that F (x, y, 1) = 0 gives the elliptic curve

mentioned above), then Fix(σ|Z(F )) is a union of two loops. That is what we see in the

“Weierstrass picture” of an elliptic curve defined over R.

Note that the intersection Z(F )∩RP2 morally has to be points, while in reality it is not.

This is because for generic p ∈ Z(F )∩RP2, TpZ(F ) admits an action by σ whose fixed locus

is a real 1-dimensional subspace ⊂ TpRP2. So transversality often fails in this intersection.

Genus is not the end Because we classify closed surfaces diffeomorphically according

to their genus, we conclude that the diffeomorphic type of Z(F ) is solely determined by

the degree. However, the detailed polynomial still has something to do; depending on the

polynomial F , we have different complex structures of Σg realized as Z(F ).

2.1 Adjunction Formula

Theorem 2.3 (Adjunction Formula). Let L = P1 be any line in P2, say L = Z(X) = {[0 :

Y : Z]}. For any smooth curve C = Z(F ) ⊂ P2, we have its topological Euler characteristic

χ(C) = −[C].[C] + 3[L].[C].

Note that the formula computes an intrinsic invariant χ(C) by the extrinsic information

[C].[C], determined by the embedding C ⊂ P2, plus a correction term 3[L].[C], determined

by the ‘canonical bundle’ KP2 = −3[L].

Corollary 2.4. The degree-genus formula.

Proof. Set C = Z(F ). By Bezout theorem, we have [L].[C] = d(= degF ), and [C].[C] = d2

(if we have trouble applying the theorem, simply replace [C] to d[L] to do the computation).

Now by adjunction formula,

χ(C) = −[C].[C] + 3[L].[C]
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⇒ 2(1− g) = −d2 + 3d.

∴ g =
1

2
(d2 − 3d+ 2) =

(d− 1)(d− 2)

2
.

The formula is proven.

There was a plenty of efforts to generalize the adjunction formula above, for C not

holomorphic but smooth. (If we see the topological proof below, this may sound tempting.)

This was studied by Kronheimer, Mrowka, etc. and one of the results are:

Theorem 2.5 (Thom’s conjuecture; Kronheimer–Mrowka theorem). The minimal genus

smooth surface ⊂ P2 that represents the homology class d[L] ∈ H2(P2;Z), d ≥ 1, is 1
2 (d −

1)(d− 2). That is, algebraic curves attain the minimal genus.

2.2 Proof of the Adjunction Formula

In most versions of the proof, the key observation is that

TP2|C = TC ⊕NP2(C),

as vector bundles over C. (Notations to be clarified later.) To emphasize the topological

proof, we present some theory of characteristic classes. (cf. Milnor–Stasheff, Characteristic

classes.) Let Mn be a closed oriented (real) n-manifold throughout the section.

1. Consider any rank n vector bundle E → M (model eg: E = TM). Pick a section

σ : M → E (model eg: vector field). Let the section be generic enough, so that points

xi ∈M with σ(xi) = 0 are finite and transverse.

M

σ

x0 x1
. . .

If E = TM , then Poincaré–Hopf index theorem will assert that

χ(M) =
∑

xi∈σ−1(0)

±1,

where ±1 refers to the index of the zero xi of the vector field σ. This ‘number’ version may

be improved as follows.

Consider 0-cycles x =
∑
xi∈σ−1(0)±[xi] ∈ H0(Mn;Z) = Z, where ± is determined ac-

cording to the index of vanishing σ at xi. Then the Poincaré dual of x is a cohomology class

e(E) ∈ Hn(M ;Z) called the Euler class of E.

Exercise 2.6. Recover Poincaré–Hopf index theorem, esp. using χ(M) = 〈e(TM), [M ]〉.
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Normal bundle Another interesting example, other than the tangent bundle, is the nor-

mal bundle. Consider closed oriented (real) manifolds Nn ⊂ M2n. By the tubular neigh-

borhood of N , we define a normal bundle NM (N) → N of N in M ; it is a vector bundle

consisting of fibers

Nx(N) = TxM/TxN.

Proposition 2.7. We have e(NM (N)) = [N ].[N ].

Proof. By the Tubular Neighborhood Theorem, a generic section of the normal bundle gives

a section σ which is transverse to the 0-section, N .

Hence the graph of σ gives a perturbation of N which is transverse to N . Now compare the

definition of e(NM (N)) and the self-intersection [N ].[N ] = [N ].[Graph(σ)].

2. Let dimRM = 2n, and let E → M be a complex vector bundle of rank n. As a real

vector bundle of rank 2n, this has its Euler class, e(E) ∈ H2n(M,Z), which is same as its

n-th Chern class cn(E).

Now suppose dimRM = 4, i.e., n = 2. From the complex vector bundle E, one has its

first Chern class c1(E) ∈ H2(M,Z), defined with two generic sections σ1, σ2 : M → E as

follows.

c1(E) := PD({m ∈M : σ1(m), σ2(m) are proportional})

:= PD({m ∈M : σ1(m) ∧ σ2(m) = 0}).

(For general n, we generalize this with n sections, and apply c1(
∧n

E) = c1(E). See

[MSE1][MSE2].)

As noted in Milnor–Stasheff, we have the following.

Proposition 2.8. We have c1(TP2) = −c1(T ∗P2) = 3PD([L]) ∈ H2(P2;Z).

Proof. See Exercise below.
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3. Let ξ1, ξ2 be C2-bundles over M4. Then we have c1(ξ1 ⊕ ξ2) = c1(ξ1) + c1(ξ2). (By the

Whitney product formula; this is not specific for 4D manifolds.)

If we apply this to C = Z(F ) ⊂ P2, together with the decomposition

TP2|C = TC ⊕NP2(C),

we have

c1(TP2|C) = c1(TC) + c1(NP2(C))

= χ(C) + [C].[C].

On the other hand, if we write i : C ↪→ P2 for the inclusion, we can compute c1(TP2|C) as

c1(TP2|C) = c1(i∗(TP2)) = i∗c1(TP2)

= i∗(3PD([L])) = 3[L].[C].

Combining the two, we get the adjunction formula.

2.3 Next

Next, we will see some interesting visual aspects of projective varieties. For instance, a

classical fact that cubic surfaces exhibit 27 lines, which admits a visualization as in this

[AMS blog], may be discussed.

3 220722

3.1 Space of hypersurfaces

Recall that a degree d hypersurfaceX ⊂ Pn is given byX = Z(F ), where F ∈ C[X0, X1, . . . , Xn](d).

Name the space

Vd,n = C[x0, X1, . . . , Xn](d)

of homogeneous degree d polynomials in (n+ 1) variables. Then we have dimVd,n =
(
d+n
d

)
,

and the space of degree d hypersurfaces Z(F ) ⊂ Pn may be written as P(Vd,n) (as Z(F ) =

Z(λF ) for λ ∈ C×). This projective space is called the parameter space of degree d hyper-

surfaces ⊂ Pn.

Note that the holomorphic automorphism group AutO(Pn) = PGL(n + 1,C) acts on

P(Vd,n) by coordinate transforms.

Remark. Let F,G ∈ Vd,n. It is in general not true that Z(F ) = Z(G) implies F = λG for

some λ ∈ C×; cf. F = X0X
2
1 , G = X2

0X1. The claim is true, however, when F,G are both

square-free. [MSE]
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Proof. If F,G were square-free, then they are determined (up to a constant) by their prime

factors. By Nullstellensatz, Z(F ) = Z(G) entails
√

(F ) =
√

(G). So we have polynomials

P,Q and integers r, s > 0 with FP = Gr and GQ = F s. If rs = 1 then r = s = 1 and P,Q

must be constant.

If rs > 1, we have PQr = F rs−1 and P sQ = Grs−1. For any prime factor π of F , if we

valuate each side of PQr = F rs−1 by π, we have νπ(P ) + rνπ(Q) = (rs − 1)νπ(F ) > 0. So

either P or Q has π. By P sQ = Grs−1, this entails νπ(G) > 0. Arguing symmetrically, we

have νπ(F ) > 0 iff νπ(G) > 0. Thus prime factors of F and G are the same.

Question 3.1. Think of two random smooth degree d hypersurfaces, say Z(
∑n
i=0X

d
i ) and

Z(X0X1X
d−2
2 + (π+ i)Xd−5

1 X5
2 − 17Xd

n). What are the common properties we expect from

these?

One conclusion is that they are diffeomorphic, which will be proven during this lecture.

Call σd,n for the space of singular degree d hypersurfaces ⊂ Pn. That is,

Σd,n = {[F ] ∈ P(Vd,n) : ∃a∈ Z(F )∀i ∂F

∂Xi
(a) = 0}.

Remark. By Euler’s identity, (degF ) ·F =
∑n
i=0 xi

∂
∂xi

F , (we obtain this by differentiating

F (λx) = λdegFF (x) at λ = 1) that ∂
∂xi

F (a) = 0 for all i implies a ∈ Z(F ). Thus the

underlined ‘∈ Z(F )’ may be replaced to ‘∈ Pn’.

Although we have defined Σd,n by a statement Z( ∂
∂X0

F, . . . , ∂
∂Xn

F ) 6= ∅, this is in fact

an algebraic condition by the coefficients of F , thanks to an amazing classical result below.

Theorem 3.2 (Resultant). Given N and d1, . . . , dr ≥ 1, there exists a polynomial Res in

Z-coefficient (called resultant) and variables aiα (i ∈ {1, . . . , r} and α ∈ ZN≥0 with |α| ≤ di)

with the following property.

For any polynomials F1, . . . , Fr in C[x1, . . . , xn], with dj = degFj, write Fi =
∑
|α|≤di a

i
αx

α.

Then we have

Z(F1, . . . , Fr) 6= ∅ ⇐⇒ Res(a1
α, . . . , a

r
α) = 0.

Proof. (cf. [Wiki]) For r = 2, denote Pk for the space of degree ≤ k polynomials in

C[x1, . . . , xn]. Define a map

ϕ : Pd2 × Pd1 → Pd1+d2

(A,B) 7→ F1A+ F2B.

Then Z(F1, F2) = ∅ iff ϕ is a linear isomorphism. Thus writing the matrix of ϕ and taking

its determinant, we get a Z-coefficient matrix of a1
α’s (|α| ≤ d1) and a2

β ’s (|β| ≤ d2).

The matter is tricky for r > 2; see [Wiki].
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Example 3.3. For F (x) = ax2 + bx + c, we have Res(F, F ′) = −a(b2 − 4ac). Sylvester’s

theorem gives that the following determinant is used to find this:∣∣∣∣∣∣∣∣
a 2a 0

b b 2a

c 0 b

∣∣∣∣∣∣∣∣ = −a(b2 − 4ac).

Corollary 3.4. The set Σd,n described above is a subvariety of P(Vd,n).

Proof. Simply think of Res(∂0F, . . . , ∂nF ) = 0.

Definition 3.5. We define Xd,n := P(Vd,n) \ Σd,n. This is a Zariski dense open subset of

P(Vd,n); hence a smooth manifold.

Remark. If [F ] ∈ Xd,n, then F must be square-free. (If P 2 | F , P nonconstant, then putting

Q = F/P 2, we have ∇F = 2PQ∇P + P 2∇Q. Thus any p ∈ Z(P ) has p ∈ Z(F ) as well

as ∇F (p) = 0. Thus [F ] /∈ Xd,n.) Therefore by a remark above, if [F ], [G] ∈ Xd,n, we have

Z(F ) = Z(G) iff [F ] = [G]. Hence we identify each element of Xd,n to its zero set.

Question 3.6 (Open, except for smaller d, n’s). What can be said about the topology of

Σd,n and Xd,n? Say, what are the cohomology rings H•(Σd,n;Q) or H•(Xd,n;Q)?

3.2 Application

Theorem 3.7. Let n, d ≥ 1. Any two smooth degree d hypersurface in Pn are diffeomorphic.

Note that, for n = 1, this is more or less just the Fundamental Theorem of Algebra.

For n = 2, we have seen degree-genus formula and classification of closed surfaces gives the

result.

Proof. Declare the set

Ud,n := {(M,p) : M ∈ Xd,n, p ∈M}.

This is called the ‘universal smooth degree d hypersurface in Pn,’ although technically Ud,n ⊂
Xd,n × Pn (and obtain topology from it as well). As no M ∈ Xd,n is empty, we have a

surjective smooth map π : Ud,n → Xd,n by the projection:

M Ud,n

Xd,n

π(M,p):=M

1. The map π is a proper map.

Because Ud,n is within Xd,n × (compact), so any sequence (Mi, pi)i≥0 in Ud,n exiting

to infinity cannot have pi’s to go to infinity. So we must have (Mi)i≥0 in Xd,n exiting

to infinity.
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2. The map π is a submersion.

To see this, think of a C1 family (Z(Ft))|t|<ε ∈ Xd,n. Then we claim that for any

p0 ∈ Z(F0), we can extend this to a path (pt)|t|<ε′ in Pn, such that pt ∈ Z(Ft).

Choose an affine chart U containing p0, say U = {X0 6= 0}. Denote ft(x1, . . . , xn) =

Ft(1, x1, . . . , xn). By smoothness, we may assume that ∂x1f0(p0) 6= 0. Define G(t, x) :=

ft(x, p0,2, . . . , p0,n). Because ∂xG(0, p0,1) = ∂x1f0(p0) 6= 0, we can solve G(t, x) = 0 to

have x = x(t), with x(0) = p0,1, for |t| < ε′. Declare pt = (x(t), p0,2, . . . , p0,n) on the

affine chart, so that ft(pt) = G(t, x(t)) = 0.

3. (Ehresmann Theorem) tells that any smooth proper submersion is a fiber bundle. So

π : Ud,n → Xd,n is a fiber bundle.

4. We have Xd,n path connected.

This is essentially because its complement, Σd,n, has real codimension 2 (cf. complex

codimension 1). Although Σd,n itself is not a manifold, as singularities of Σd,n has

further real codimension ≥ 2, this does not matter while deforming a path to a ‘safe

position.’

Combining the Ehresmann Theorem, together with path-connectedness, we see that every

fiber of Ud,n → Xd,n is diffeomorphic.

3.3 27 Lines on a Smooth Cubic Surface

Let S = Z(F ) ⊂ P3, with degF = 3, be a smooth cubic surface. So S is a closed complex

2-manifold, which is also a smooth projective variety with dimR S = 4. Their moduli space,

X3,3, has dimension
(

3+3
3

)
− 1 = 19.

A line L in P3 is a linear copy of P1. One writes L = Z(F1, F2) for F1, F2 ∈ C[X0, . . . , X3](1),

and F1, F2 linearly independent.

The following is quoted as a ‘start of the modern algebraic geometry.’

Theorem 3.8 (Cayley–Salman). Any smooth cubic surface S has exactly 27 distinct lines.

Cayley showed that there is a fixed number k such that all smooth cubic surfaces contain

k lines; it is a work of Salman who computed k = 27, especially in comparison with the

Fermat cubic.

Remark. Finding 27 lines algorithmically is still open.

Proof. Step 1 We first check the theorem for the Fermat cubic. (Exhibiting 27 lines is

not hard. Showing that the list is exhaustive is precisely the question of finding v, w ∈ S,

v = [V0 : V1 : V2 : V3], etc. such that
∑3
i=0 V

2
i Wi =

∑3
i=0 ViW

2
i = 0, which can be done via

standard computational algebraic geometry means.)

16



Step 2 (The Parameter Space) Set X3,3 = P19 \ Σ3,3. We have seen that this is path

connected.

Step 3 (The Incidence Variety) Recall that the moduli of lines in space, {P1 ↪→ P3} =

GrC(2, 4), forms a smooth projective variety (in P5, by the Plücker embedding).

The incidence variety of lines on a smooth cubic surface is

M = {(S,L) : S ∈ X3,3, L ⊂ S a line}.

This has natural projection π : M → X3,3, and π−1(S) is precisely the set of all lines in S.

A key fact is that, one can compute Dπ in coordinates, which turns out to be a linear

isomorphism (on each point). So π is a local diffeomorphism. Because π is proper, π is a

covering map.

Step 4 (Endgame—“Method of Continuity”) By Step 3 and Step 2, we conclude that

the size of the fiber |π−1(S)| is constant, in S ∈ X3,3. That |π−1(S)| = 27 is from Step 1.

Step 5 (Last hole) What is proven up to here is that π is a cover on π(M) ⊂ X3,3,

of degree 27. The image, the set of cubic surfaces S ∈ X3,3 that has a line in it, forms a

nonempty clopen subset of X3,3, as follows.

• The set π(M) ⊂ X3,3 is closed.

For a cubic homogeneous polynomial F ∈ C[X0, . . . , X3](3), one can expand

F (V + tW ) = F (V ) + tF (1)(V,W ) + t2F (1)(V,W ) + t3F (W ),

for some homogeneous polynomial F (1) ∈ C[Vi,Wj ] in bidegree (2, 1); in fact, F (1)(V,W ) =

DV F (W ).

A line L = P(C.{v, w}) is in S if and only if v, w ∈ S = Z(F ) and F (1)(v, w) =

F (1)(w, v) = 0. Denoting F =
∑
|α|=3 cαX

α, the resultantR(c) = Res(F (V ), F (1)(V,W ), F (1)(W,V ), F (W ))

is a polynomial in (cα)|α|=3’s. Therefore the zero set (evidently closed) Z(R)∩X3,3 ⊂
X3,3 precisely collects the cubic surfaces with a line in it, i.e., equals to π(M).

• The set π(M) ⊂ X3,3 is open. This is general property of a submersion: Lemma 3.9.

• The set π(M) is nonempty thanks to the Fermat cubic.

Hence π(M) = X3,3 follows. More algebro-geometric proof of this surjectivity may be found

in [Reid, UAG, Prop 7.2].

Lemma 3.9. Let f : N →M be a C1 submersion, i.e., each p ∈ N has Dpf : TpN → Tf(p)M

a surjection. Then any continuous map γ : (−ε, ε)k → M with γ(0) = f(p) has a local lift

Γ: (−ε′, ε′)k → N with Γ(0) = p. That is, f(Γ(t)) = γ(t) whenever ‖t‖ < ε′.
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Proof. Let dimM = m and dimN = m+`. Because f is a submersion, there is a coordinate

(xm, y`) near p such that ∂xf(p) is invertible. Define a function G : U ⊂ Rm →M by

G(xm) = f(xm, y`(p)).

Then Dxm(p)G is an invertible map, hence has a local inverse G−1 : V ⊂M → U such that

G−1(γ(0)) = G−1(f(p)) = xm(p). Thus shrinking the domain of γ (to γ−1(V )), we have a

lift Γ(t) = (G−1(γ(t)), y`(p)).

Corollary 3.10 (Not so trivial). For S ∈ X3,3, this is diffeomorphically P2 blown up at 6

points. That is, S ∼= CP2#6CP2.

To see this, play with a birational map S 99K L1 × L2
∼= P1 × P1 and some blow-ups on

that base.

Corollary 3.11. For S ∈ X3,3, we have H2(S;Z) = Z7 (by Mayer–Vietoris), with the

intersection form [1]⊕ [−1]⊕6.

Therefore Mod(S) has a representation

ρ : Mod(S)→ Isometry(H2(S;Z), ·) = O(1, 6)(Z),

[f ] 7→ f∗ � H2.

By Freedman (by his Fields-medal theorem), this is surjective; by Quinn, this is injective.

So this leads us to think of the orbifold H6/O(1, 6)(Z) versus the moduli space X3,3 of S.

4 220804-1: 2-manifolds

As the first day of the minicourse, we announce our goal as follows: recover ‘Zariski-style

algebraic geometry,’ focused on the study of algebraic varieties to answer fundamental ques-

tions like “write down homology representatives of a K3 surface.”

4.1 Overview

Let Mn be a closed oriented manifold. We define its mapping class group

Mod(M) = π0(Homeo+(M))

= Homeo+(M)/Homeo0(M),

where Homeo+(M) equips the compact-open topology. There the identity component carries

the homeomorphisms f isotopic to the identity, i.e., those homeomorphisms that admits a

continuous map F : M × [0, 1]→M such that

• each F (−, t), t ∈ [0, 1], is a homeomorphism,
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• F (−, 0) = IdM , and

• F (−, 1) = f .

Remark. For surfaces, it is well-known that two homeomorphisms are isotopic iff they are

homotopic. Because surfaces of finite type are K(π, 1)-spaces, this is equivalent of inducing

the same homomorphisms on the fundamental groups.

The study of Mod(M) is risen from the question, “what are the self-homeomorphisms of

M?” And for the state of art today, our understanding of Mod(M4) today is in no different

status than that of Mod(Σg) in 1974, when it waited the contributions of William Thurston

and many.

Outline The outline of the whole course will be as follows.

1. Recap of 2-manifold stories.

2. About 4-manifolds.

3. Mapping class groups of 4-manifolds.

4. Case studies.

4.2 The story of 2-manifolds

The primary source of the facts stated below are from [FM12] B. Farb, D. Margalit. A

Primer on Mapping Class Groups. Princeton University Press. 2012.

Topological or Smooth classification We all know that all closed oriented surfaces are

homeomorphic / diffeomorphic to Σg, for some g ≥ 0. We further have the following zoo of

surface models:

Topological Metric Σ̃g Holomorphic 1-form Set of complex structures

Σ0 = S2 K ≡ 1 Ĉ(= S2) ω ≡ 0 Unique

Σ1 = T2 K ≡ 0 C dz (vanishes nowhere) ∞ many

Σg, g ≥ 2 K ≡ −1 4 any ω has 2g − 2 zeroes ∞ many

Some quick facts about the surface mapping class groups:

• We have Mod(S2) = (1), Mod(T2) = SL2(Z).

• A theorem of Dehn:

Theorem 4.1 (Dehn, 1922). Let g ≥ 0. Then Mod(Σg) is generated by a finitely many

Dehn twists.
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By a Dehn twist we refer to the map (here, I = [0, 1] and S1 = {z ∈ C : |z| = 1})

S1 × I → S1 × I

(z, t) 7→ (z · e2πit, t).

On surfaces this is determined by the simple closed curve (SCC) α, so that we can define

this map on a tubular neighborhood of α. We denote Tα for the Dehn twist constructed in

this way.

Tales after 1974 Now we trace a panorama of results about mapping class groups after

1974, the year when Thurston developed the theory of measured foliations on surfaces and

used this to prove Nielson–Thurston trichotomy stated below.

4.2.1 Normal Forms

Nielson–Thurston trichotomy For simplicity, let g ≥ 3.

Theorem 4.2 (Nielson–Thurston). For each mapping class ϕ ∈ Mod(Σg) there exists F ∈
Homeo+(Σg) in the class ϕ, denoted F ∈ ϕ, such that one of the following holds.

1. Map F has finite order: F d = Id.i

2. Map F is reducible: there exists a finite set {α1, . . . , αn} of SCCs such that F shuffles

αi’s.ii

3. Map F is pseudo-Anosov: there exists pairs (Fu, µu) and (Fs, µs) of F -invariant trans-

verse measured foliations, on which F acts by multiplications by λ (for Fu) and λ−1

(for Fs) for some λ > 1.

Thurston Normal Form (See Ivanov’s book [Iva02], and also [BLM83].)

Theorem 4.3. For all ϕ ∈ Mod(Σg), ϕ 6= 1, there exists N ∈ Z>0
iii, F ∈ ϕN , and a finite

set of SCCs {αj} (possibly empty) that has the following represention of F .

iTechnically speaking, that ϕd = 1 is different from having an actual homeomorphism F ∈ ϕ of order d.

But if we know the isometric action of ϕ on the Teichmüller space of Σg , it is easy to guess there does exists

an order d representative of ϕ.
iiTypical example of this is the Dehn twist.

iiiTo remove any combinatorial concerns that comes from e.g. rotations
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Denote S1, . . . , Sk for the component surfaces of Σg \
⋃
αi. Then we can writeiv

F =
∏

Tnj
αj
◦ F |S1 ◦ F |S2 ◦ . . . ◦ F |Sk

,

where each F |Si
is either the identity or a pseudo-Anosov map composed several time.

This result is analogous to the Jordan normal form in the linear algebra. Furthermore,

we have the set {αj}—called the canonical reduction system (CRS)—being canonical, in the

sense that conjugations CRS(fgf−1) = f.CRS(g) give rise to the natural group action.

To extend the theory of mapping class groups to 4D, we ask:

Question 4.4. Is there any 4-manifold analogues to the trichotomy or the normal form?

4.2.2 Preserving Structures

Theorem 4.5. Let g ≥ 2. For each ϕ ∈ Mod(Σg), we have F ∈ ϕ preserving. . .

1. a hyperbolic metric on Σg iff ϕ has a finite order,

2. a complex structure on Σg iff ϕ has a finite order,

3. a proper compact submanifold N ⊂ Σg
v iff ϕ is reducible.

4.2.3 Realization Problems

Think of the natural projection π : Diff+(Σg)→ Mod(Σg). A natural question rises:

Question 4.6. Is there a section of π? That is, is there a copy σ : Mod(Σg) → Diff+(Σg)

of Mod(Σg) that inverts π in the sense that πσ = IdMod?

The answer is found by Morita [Mor87] as no.

Question 4.7. What about a subgroup G < Mod(Σg)?

ivNote that Tαj ’s and F |Si
’s are commutating, so the order does not matter much here.

vThis can have a boundary, and not necessarily connected. Think of the annulus preserved under the

Dehn twist.
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The Kerkhoff–Nielson realization states that this problem is affirmative when |G| <∞.

We may further extend the question for G < Mod(Σg) with finite index, but this is already

implied by Morita [Mor87] to be false.

4.2.4 Best Representation

A pseudo-Anosov map F has minimal topological entropy [KH95, §3.1.b] in its homotopy

class.

4.2.5 Relations with bundles

Consider a surface bundle
Σg E

B.

This induces the monodromy representation ρ : π1(B)→ Mod(Σg), by stacking infinitesimal

deformations of Σg going along a loop in B.

Theorem 4.8 (Earle–Eells 1969). There exists a bijection between the set of surface bundles

over B, modulo bundle isomorphism, and the set Hom(π1(B),Mod(Σg)) modulo conjugate

homomorphisms.

4.2.6 Relations with Moduli spaces

There are many ways to view the moduli space Mg (g ≥ 2) of the surface Σg: Mg is

• the set of hyperbolic metrics on Σg modulo isometries,

• the set of Riemannian metrics on Σg modulo conformal diffeomorphisms,

• the set of complex structures on Σg modulo biholomorphisms,

• the set of smooth genus g complex curves modulo algebraic isomorphisms,

• the set of singular flat structures of genus gvi,

etc. Now all these equivalent definitions gives rise to a complex orbifold, whose orbifold

fundamental group is Mod(Σg) = πorb
1 (Mg).

This comes from the isometric action Mod(Σg) → Isom(Teich(Σg)) on the Teichmüller

space of Σg. As Teich(Σg) ⊂ C3g−3 is a contractible open subset and Mg = Teich(Σg)/Mod(Σg),

the claim follows.

viKeyword: translation surfaces. But this apparently carries more structure, so seems to be more than

what Mg is.
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5 220804-2: 4-manifolds

5.1 A quick overview

Theorem 5.1 (Markov, 1956). No algorithm exists whose input is a pair of triangulations

of a closed 4-manifolds M1,M2, and the output is whether M1 and M2 are homeomorphic

or not.

Proof. (idea) Every finitely presented group Γ = 〈α1, . . . , αm | R1, . . . , Rn〉 is Γ = π1(M)

for some closed orientable 4-manifold M .

Proof. To see this, think of the π1 of the connected sum, π1(#m
j=1(S1 × S3)). This is the

free group of m letters, by van Kampen thoerem.

Pick embedded loops α1, . . . , αm that generates the free group; set αi ∩ αj = {p} (base-

point) whenever i 6= j. Denote N = #m
j=1(S1 × S3) \

⋃
N(αi), where N(αi) is a tubular

neighborhood of αi. Then N is a compact manifold whose boundary ∂N is
⋃m
i=1 αi × S2(=⊔m

i=1 S
1 × S2).

For each relation Ri, we glue S2×D2, with boundary S2×S1, via the word given as Ri.

By van Kampen we have the π1 demanded.

By Markov, there is no algorithm that determines isomorphicity of two finitely presented

groups. This finishes.

Hence we see that there is no convenient way to classify 4-manifolds, unlike what we had

seen for surfaces. However, there are two big classes that interests us.

1. Simply connected 4-manifolds: π1(M) = 0.

2. “Algebraic surfaces,” i.e., smooth complex projective varieties of dimC = 2.

Furthermore, there are two main topogical invariants for 4-manifolds M :

• the fundamental group π1(M), and

• the intersection lattice (H2(M,Z), QM ).

5.2 The Intersection Form

Recall that, for a closed oriented 2n-manifold M , we have a bilinear form, called the inter-

section form,

QM : Hn(M ;Z)free ×Hn(M ;Z)free → Z

(α, β) 7→ 〈α ^ β, [M ]〉

=

ˆ
M

α ∧ β.
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Here, Hn(M ;Z)free is Hn(M ;Z) quotiented out the torsion subgroup; this naturally embeds

into the de Rham cohomology Hn
dR(M), thus the notation

´
M
α ∧ β.

The Poincaré dual of this form is described as

Hn(M ;Z)free ×Hn(M ;Z)free → Z

(a, b) 7→ 〈PD(a) ^ PD(b), [M ]〉,

which will be also called the intersection form on M .

Remark. 1. The form QM is a nondegenerate. That is, for each α 6= 0 we have β such

that QM (α, β) 6= 0.

2. Note that a ^ b = (−1)n b ^ a. So if n is odd, then QM is skew-symmetric (i.e.,

symplectic), but if n is even, QM is symmetric.

We will conventionally denote v2 = QM (v, v) and u · v = QM (u, v). Furthermore, if n is

even, one can represent

QM (u, v) = uAvT ,

where A is a symmetric n× n Z-valued matrix. If we fix a basis v1, . . . , vb of Hn(M ;Z)free,

then we write A = (aij) where aij = QM (vi, vj).

QM as an intersection number One can add a geometric taste to the intersection form

QM . The following is a geometric preliminary to it.

Proposition 5.2. Let M be any (oriented) 4-manifold, and ξ ∈ H2(M ;Z). Then for some

g ≥ 0 we have an embedding i : Σg ↪→M such that i∗[Σg] = ξ.

Proof 1. We have an immersion i : Σg # M (see [Hatcher]) such that i∗[Σg] = ξ. This has

at most finitely many self-intersections, and one can perturb i so that each self-intersections

are locally of the form {z1z2 = 0} ⊂ C2. This can be smoothed to {z1z2 = ε}; see [Scorpan,

Fig 3.2 in p.113].

Each smoothing costs of (1) increasing the genus of the model surface, or (2) admitting a

possibility to have a disconnected surface. Thus we have an embedded, possibly disconnected

surface representation of ξ.

To remedy the disconnectedness, we make surface connected sums through some tubes

connecting the components.

Proof 2. There is a bijection between H2(M ;Z) with [M,K(Z, 2)], where [M,K(Z, 2)] is

the set of homotopy classes of the maps M → K(Z, 2) = CP∞. Note that H•(CP∞;Z) =

Z[[P1]](∼= Z[x]). Now given ξ ∈ H2(M ;Z), construct PD(ξ) ∈ H2(M ;Z), realize this as

Fξ : M4 → CP3, reduced to M4 → CP2, and we can perturb Fξ so that this t P1. Thus

F−1
ξ (P1) is the demanded embedded 2-manifold representing ξ.
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Now we are ready to define the algebraic intersection numbers.

Definition 5.3. Let An, Bn ⊂M2n be closed embedded submanifolds, A t B. The algebraic

intersection number between A and B is defined as

[A] · [B] :=
∑

x∈A∩B
ε(x),

where ε(x) = ±1 according to the orientation of TxA⊕ TxB within TxM .

Example 5.4 (n = 1).

Note that [a] ∈ H1(M ;Z) is zero. So [a] · [b] in the intersection form is zero a priori.

Theorem 5.5 (Fundamental Theorem of the Intersection Theory). The intersection form

measures the algebraic intersection number. That is, QM ([A], [B]) = [A] · [B].

More on 4D intersection forms Let dimM = 4, and M be closed and oriented. Denote

d = b2(M) be the 2nd Betti number, i.e.,

H2(M ;Z)free = H2(M ;Z)free = Zd.

As discussed earlier, we have QM a symmetric form.

Definition 5.6. A lattice Λ is a free abelian group Zd, d ≥ 0, equipped with a nondegenerate

symmetric bilinear form QΛ.

For two lattices Λ,Γ to be isometric, this means we have an isomorphism f : Λ
∼−→ Γ

of free abelian groups such that f∗QΓ = QΛ, i.e., QΓ(f(u), f(v)) = QΛ(u, v) holds for all

u, v ∈ Λ.

We say the rank of a lattice Λ as its Betti number, d. We say a lattice is unimodular if

one has a basis v1, . . . , vd of Λ such that the matrix A = (QΛ(vi, vj)) has determinant 1.
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Proposition 5.7. For closed and oriented M4, let HM = (H2(M ;Z)free, QM ) be the inter-

section lattice. This is a unimodular lattice.

Proof. The curried map Q̃M : H2(M ;Z)free → Hom(H2(M ;Z)free,Z) is same as the Poincaré

dual map, thus an isomorphism.

Example 5.8. First examples of intersection lattices:

1. Let M = S4. Then HM ≡ 0.

2. Let M = CP2. Then HM ≡ (Z, (1)), i.e., we have QM (1, 1) = 1.

Proof. We know that H2(M ;Z) is generated by a line [L]. By Bezout’s theorem, we

have [L] · [L] = 1.

3. Let M = S2 × S2. Then HM = (Z2, [ 0 1
1 0 ]).

Proof. We know that H2(M ;Z) is generated by ξ1 = [S2 × {∗}] and ξ2 = [{∗} × S2].

Now ξ1 · ξ1 = 0 because one can set the point ∗ in different places and make the

representations disjoint; likewise, ξ2 · ξ2 = 0. We have ξ1 · ξ2 = 1 by looking at the only

obvious intersection point.

4. Let M = M1#M2 (connected sum). Then QM = QM1 ⊕QM2 ; that is, the intersection

lattices HM1
and HM2

orthogonally join.

5.3 Integral Quadratic Forms

We study the isomorphism invariants of lattices (Λ, QΛ) here.

• The rank rank(Λ).

• The signature σ(QΛ).

Given a matrix representation A of QΛ,vii one can diagonalize A over the reals and list

λ1 ≥ . . . ≥ λd. If p is the number of positive eigenvalues, then σ(QΛ) := p− (n− p) =

2p− n.

• Definiteness of QΛ.

That is, asking whether QΛ is a positive definite, negative definite, or indefinite. This

is equivalent of asking whether σ(QΛ) = n, = −n, or 6= ±n respectively.

viiThat is, the matrix A = (QΛ(vi, vj)) for a basis v1, . . . , vd of Λ
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• Parity of Λ.

We say Λ is even if QΛ(v, v) ∈ Z is even for all v ∈ Λ; odd otherwise. (Exercise: it

suffices to check this whether QΛ(vi, vi) is even for each basis vector vi.)
viii

Such isomorphism invariants, a number-theoretic invariant, restrict what kind of lattices

can be possible. This gives a beautiful restriction of topological invariants, the intersection

lattice, by the number theory.

Example 5.9. 1. Let Λ = Zd and QΛ is given by the matrix Id, the d×d identity matrix.

This gives a lattice (Λ, QΛ), denoted d(1), which has rank d, is positive definite, and

is odd.

The negative counterpart, denoted d(−1), is a rank d negative definite and odd lattice.

2. For Q = p(1)⊕ q(−1), p, q ≥ 1, this is a rank p+ q, signature p− q, and odd indefinite

lattice.

3. (The hyperbolic lattice) Denote U = (Z2, [ 0 1
1 0 ]). That is, ΛU = Z.{e1, e2} has e2

1 =

e2
2 = 0 and e1 · e2 = e2 · e1 = 1. This is a rank 2, signature 0 (thus indefinite), even

lattice.

(This U is diagonalizable over R. Think of the index 4 sublattice Λ′ = Z.{e1− e2, e1 +

e2}. Then by manual computation, QU restricted to Λ′ has the matrix diag(−2, 2).

This indirectly gives unimodularity, as [ΛU : Λ′] = ±det(QU |Λ′).)

4. (The E8 lattice) Let {e1, . . . , e8} be the standard basis of R8, equipped with the

standard inner product. Set

ΛE8
:= Z.{e2 − e3, e3 − e4, . . . , e7 − e8, e7 + e8,

1

2
(e1 + e8 − e2 − · · · − e7)}.

Set Q = QE8 for the standard inner product restricted to ΛE8 . Check: (i) Q is positive

definite, (ii) Q is integral (i.e., QE8
(ΛE8

,ΛE8
) ⊂ Z), and (iii) Q is even, and (iv) Q is

unimodular.

If explicitly written as a matrix, Q is represented by

AQ =


2 −1
−1 2 −1
−1 2 −1
−1 2 −1
−1 2 −1 −1
−1 2 −1
−1 2

−1 2

 ,
which is associated to the E8 dynkin diagram with vertex weights 2.

The lattice (ΛE8
, QE8

) is named E8, and its negation is denoted E8(−1).

viiiHint: (
∑

vi)
2 ≡

∑
v2
i (mod 2).
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Example 5.10 (Fermat quartic, or K3 surface). Let S = Z(F ) ⊂ P3 be given by a smooth

quartic surface, say S = Z(X4
0 +X4

1 +X4
2 +X4

3 ).

A non-obvious use of the Lefschetz hyperplane theorem gives π1(S) = 0, and some

insane characteristic class computations give that HS := (H2(S;Z), QS) is isometric to

E8(−1)⊕2 ⊕ U⊕3 (rank 22, even, signature −16 = 3− 19).

Now here is a big theorem: classification of indefinite lattices.

Theorem 5.11 (Hasse–Minkowski). Let (Λ, Q) be a unimodular lattice (i.e., Q is an integral

unimodular quadratic form). Suppose Q is indefinite. Then (Λ, Q) is isometric to a lattice,

desribed below.

• If (Λ, Q) is odd, then it is isometric to a(1)⊕ b(−1), a, b ≥ 1.

• If (Λ, Q) is even, then it is isometric to aE8(±1)⊕ b U , a ≥ 0 and b ≥ 1.

Proof. See Serre. A Course in Arithmetic, or Husemoller–Milnor.

Remark. 1. For positive or negative definite cases, there are only finitely many classes

for each fixed rank. But the number of isometric classes grows infinite, as the rank goes

infinity. For ranks 8, 16, 24, 40, then the corresponding numbers of isometric classes

are 1, 2, 24, ∼ 1051.

2. One can have (1) ⊕ 9(−1) = E8(−1) ⊕ (1) ⊕ (−1). This, thus, in a sense breaks the

uniqueness. Another example of this sort is E8 ⊕ E8(−1) = 8U .

5.4 Simply connected 4-manifolds

Let M4 be a closed simply connected manifold. Then by universal coefficient theorem and

the Poincaré duality, we have

Hi(M ;Z) =


Z (i = 0, 4)

0 (i = 1, 3)

Zd (i = 2).

(By the universal coefficient theorem, we have
H2(M ;Z)

Ext1(H1(M ;Z),Z)
= Hom(H2(M ;Z),Z) =

H2(M ;Z)free. This equals to H2(M ;Z) when π1M = 1. So H2, and H2 too by Poincaré

duality, is torsion-free.) So we are safe to discuss HM = (H2(M ;Z), QM ) without taking

further quotients.

28

https://mathscinet.ams.org/mathscinet-getitem?mr=506372


Freedman’s Theorem Now here is a cornerstone theorem, that gave the Fields medal to

Freedman.

Theorem 5.12 (Freedman 1982). 1. (Existence) For every symmetric unimodular inte-

gral bilinear form B there exists a closed (topological) 4-manifold M which is simply

connected and QM ∼= B.

2. (Uniqueness) If B is an even unimodular form, then M is unique. If B is odd, then

there are two homeomorphism classes of 4-manifolds, where at most one is smoothable.

Corollary 5.13 (4D Poincaré conjecture). For a closed orientable 4-manifold M4, M is

homotopy equivalent to S4 iff M is homeomorphic to S4.

The question that whether we can have a diffeomorphism with S4 is still open.

Proof. The intersection form QS4 = 0. Thus QM ∼= QS4 is an even lattice, thus belongs in

the unique homeomorphism class.

Example 5.14. 1. Recall that QS2×S2 = U . This is even (and indefinite), thus has the

unique homeomorphism class. (That is, if π1M = 1 and QM = U , then M ∼= S2 × S2

by a homoeomorphism.)

2. Let M = aCP2#bCP2, so that QM = a(1) ⊕ b(−1). Thus there is a ‘non-smooth M .’

(If M = P2, this means we have a ‘fake P2’ which is never smooth!)

Corollary 5.15 (Exotic 4-manifold). There exists a symmetric unimodular integral bilinear

form B such that any closed simply connected 4-manifold M with QM ∼= B cannot be a

smooth manifold.

Proof. By (Rochlin 1952), if π1M
4 = 1 and QM is even, and if M is smooth, we have

16 | σ(QM ). (Recall that σ(QM ) is the signature.)(If QM is even, then we always have

8 | σ(QM ).)

By (Freedman), there exists a closed, simply connected, topological 4-manifold M4 such

that QM = E8, called “E8 manifold.” This has σ(QE8
) = 8. So any 4-manifold homeomor-

phic to M cannot be smoothed. Note that our example rises with an even lattice B.

Of course the above construct is not the only one; there are many more examples of this

property.

Theorem 5.16 (Donaldson 1983). Let M4 be a closed simply connected 4-manifold. Suppose

M is smooth.

1. If QM is definite, then QM is either n(1) and n(−1). In particular, aE8(±1) never

appears as a direct summand of QM .

2. If QM = aE8(±1)⊕ b U , with a > 0, we have b ≥ 3.
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6 220805-1: Example: K3 surfaces

Remark. Almost nothing is known for the mapping class group of K3 surfaces, at least

just as what we know about the surface mapping classes. An ad: there is a project ongoing

(Farb–Looijenga) for Nielson realization for K3 surfaces.

K3 surfaces does give a vast range of new researches, giving constant challenges for

whoever gets interested in it.

Definition 6.1. Let M be a closed complex surface. We say M is a K3 surface if it satisfies

the followings.

1. M is simply connected: π1(M) = 0.

2. M admits a nowhere vanishing holomorphic 2-form ω. (That is, at each point p ∈ M
we have a holomorphic coordinate (z1, z2) that lets us to write ω = dz1 ∧ dz2.)

Remark. Although (as it will turn out later) there is only one diffeomorphic model for

K3 surfaces, distinguishing the possible complex structure is still meaningful in its study.

Analogously, it is meaningful to study various complex 1D tori C/Z.{1, τ}, with τ ∈ {=τ >
0} varying, as they exhibit various geometries.

At first glance one might feel wondered why we are making such a complicated defini-

tion. An analogous candidate for the surface is X = T2, where X admits a nonvanishing

holomorphic 1-form on it.

Theorem 6.2 (Enriques–Kodaira trichotomy). We have a classification of closed complex

surfaces, as follows.

1. Rational / Ruled surfaces: those biholomorphic to P1×P1, P2, . . . . (Another example:

nontrivial S2-bundle over S2)ix

2. Complex tori: C2/Λ; K3 surfaces!x

3. General Type. For example, CH2/Γ.xi

Plus blow-ups of them; the above list is the list of (birationally) minimal surfaces.

Example 6.3. Let Md be a smooth degree d hypersurface in P3. That is, Md = {[X0 : X1 :

X2 : X3] : F (X0, X1, X2, X3) = 0}, where F ∈ C[X0, X1, X2, X3](d), and ∇F = 0, F = 0 do

not have a common root.

Few facts about Md’s: (i) M1 = P2, (ii) M2
∼= P1×P1 (exercise), (iii) M3 = Bl{p1,...,p6}P2,

(iv) M4 = (K3 surface), and (v) Md, d ≥ 5, is of general type.

ixThis correponds to genus 0 surface.
xThese correspond to genus 1 surface.

xiThis correponds to genus ≥ 2 surfaces.
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Remark. About M3, we have seen that this carries 27 lines in it. We describe these 27 lines

in the viewpoint of S = Bl{p1,...,p6}P2. For that, we further assume that p1, . . . , p6 are in

general position, meaning that (a) no two indices collide pi 6= pj , (b) no three are on a line,

and (c) no conic exists to contain all 6 points.

Get the first 6 lines e1, . . . , e6 by ei = π−1(pi), where π : S → P2 is the natural blow-down

map. We get 15 more lines coming from pairs ˆ̀
ij , the strict transform of `ij the line in P2

connecting pi and pj . (That is, take the Zariski closure of π−1(`ij \ {pi, pj}).)
The last 6 lines are obtained as follows. Denote C1, . . . , C6 for the conic that passes

through {{p1}, . . . , {{p6} ⊂ {p1, . . . , p6} respectively.xii The strict transforms of Ci’s are the

last lines that we have seeked for.

6.1 Topology of K3 surfaces

1. Because M is complex, M is orientable, so H0(M ;Z) = H4(M ;Z) = Z. By Poincaré

duality, we have QM (intersection lattice) unimodular thus.

Furthermore, as π1M = 0, we have H1(M) = H3(M) = 0.

2. By the Hodge theory, we have the followings about the intersection lattice QM :

a. QM is even,

b. QM is indefinite, and

c. QM has signature (3, 19).

Proposition 6.4. Suppose M is a K3 surface.xiii Then M has a unique holomorphic 2-form,

up to scaling.

Proof. Let ω1, ω2 be two holomorphic 2-forms, where ω2 = ω is the holomorphic 2-form

required by the definition of K3 surfaces. Then we can locally write

ω1 = f1(z1, z2) dz1 ∧ dz2,

ω2 = f2(z1, z2) dz1 ∧ dz2,

where f1, f2 are holomorphic functions. Note that f2 is nowhere vanishing. By this we have

the function

ω1

ω2
: M → C

(z1, z2) 7→ f1(z1, z2)

f2(z1, z2)
,

a well-defined holomorphic function on all of M . Liouville’s theorem applies, and we have

ω1/ω2 constant.

xii{A = X \A is the ‘Bourbaki notation’ for the set complement.
xiiiMore generally, M has a nowhere vanishing holomorphic 2-form.
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If this proposition translates to a fact in the Hodge decomposition

H2
dR(M) = H2,0 ⊕H1,1 ⊕H0,2,

what the proposition says is that H2,0 = H0,2 = C.

3. Recall the classification of even, unimodular, indefinite quadratic forms:QM = aE8(±1)⊕
b U . As the right hand side has the signature (b, 8a+ b) or (8a+ b, b), the only way to match

this with (3, 19) is to have QM = 2E8(−1)⊕ 3U .

6.2 Examples of K3 surfaces

1. Smooth quartic surfaces in P3. For example, the Fermat quartic Z(
∑3

0X
4
i ).

2. 2-sheeted Branched covers of P2, branched over a smooth sextic curve. That is, M in

the diagram below is a K3 surface.

M

P2 C

(
branch

locus

)2:1

⊃

3. The Kummer surface.

Let A = C2/Λ be a complex torus, which is also an abelian variety. Think of 16 2-torsion

points A[2] = 1
2Λ/Λ. Let M̂ = BlA[2]A.

There is an involution i : A → A, (z1, z2) 7→ (−z1,−z2), where 〈i〉 acts on A with

Fix(i) = A[2]. One can lift i to M̂ and induce an involution i : M̂ → M̂ as well.

Thus the quotient M := M̂/〈i〉 = Kum(A) is a smooth complex manifold, although i

does not act freely on M̂ . (Say, construct a coordinate near each ‘dangerous’ zone.) There,

M turns out to be a K3 surface.

Remark. This construction is in the analogy of the Lattès example in complex dimension 1.

That is, by the hyperelliptic involution on a torus T = C/Λ, we obtain S2(2, 2, 2, 2), dismiss

orbifold points, and induce any affine-linear map on T to a map on S2.

An interesting geometry feature of the Kummer surface is, once we have a point ei ∈ A[2],

the corresponding line in M has self-intersection −2. That is definitely rare in 4-manifolds!

4. Let M = X2 ∩X3, where Xj ⊂ P4’s are smooth hypersurface of degree j. This is also

a K3 surface.

Theorem 6.5 (Kodira 1964; conjectured by A. Weil?). All K3 surfaces are diffeomorphic.
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Proof is not explicit in the sense that we do not construct an explicit diffeomorphism

between K3 surfaces. (Rather, the proof first (1) deforms every K3 surfaces to a quartic

surface, and (2) show that all quartic surfaces are diffeomorphic from one another.)

Another way to illuminate this is to refer to Freedman’s theorem. As the intersection

lattice is even for every K3 surfaces, and they are all isometric from one another, the theorem

only admits one homeomorphic class. (A weaker theorem proven in a complicated way!)

In fact, there are ‘fake K3 surfaces’ that does not admit complex structure on it, but

still homeomorphic to any complex K3 surfaces. This gives a subtlety while talking about

the moduli of ‘homeomorphic K3 surfaces,’ but practicaly, they can be ignored.

7 220805-2: Mapping Class Groups of 4-manifolds

7.1 Mapping Class Groups of 3-manifolds

This is the last dimension where Mod(M3) defined in topological and differentiable category

equals. Key results:

• (Johannson 1979) If M3 is closed, irreducible, and atoroidal, then Mod(M3) is finite.

• If M3 is Seifert fibered—i.e., is a S1-bundle over a 2D orbifold Σ—then we have a

short exact sequence

1 Z Mod(M) Mod(Σ) 1.

(Exception: M = T3.)

• The group Mod(M1# . . .#Mr) can be interesting; writing M = #r
i=1Mi, this admits a

natural homomorphism to Out(π1(M)). In case if eachMi = S2×S1, then π1(M) = Fr.

This perspective of studying Out(Fr) is focused by Lei Chen, Bena Tshishiku, etc.

7.2 The Kinds of things known about the Mapping Class Groups

of 4-manifolds up until today

Here we set Mod(M4) = π0(Homeo+(M)), i.e., define it in the topological category.

Example 7.1 (First examples). a. If M is a complex surface, then the biholomorphic au-

tomorphism group Aut(M) is usually finite. (Esp. when M is a projective variety of the

general type or K3.)

Mukai classified which finite groups can occur as Aut(K3). On contrary, there are infinite-

order complex automorphisms on some K3 surfacesxiv; see McMullen, Filip, etc.

xivwhich is necessarily not algebraic
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b. Suppose M = P2 and σ : P2 → P2 given by [X : Y : Z] 7→ [−X : Y : Z]. Note that σ is

isotopic to the identity. (Consider [X : Y : Z] 7→ [eitX : Y : Z]—by Y. Minsky. Another

approach—use the connectivity of PGL3(C).)

Let τ : P2 → P2 be the complex conjugation, i.e., [X : Y : Z] 7→ [X : Y : Z]. This cannot

be isotoped to the identity, because τ∗ = −Id � H2(P2;Z) = Z. We furthermore note

that τ , and τ2 = Id, are both orientation-preserving.

Exercise 7.2. Any diffeomorphism F � P2 is orientation-preserving. (Also true for K3

surfaces!)

Proof. We have c ∈ Z \ {0} such that F∗[P1] = c[P1]. Thus F∗[P2] = F∗[P1]2 = c2[P1]2 =

c2[P2], c2 > 0, should preserve the orientation class.

c. Dehn twists about (−2) 2-spheres. That is, by the embedded sphere i : S2 ↪→ M such

that v = i∗[S2] has v2 = −2.

To elaborate, we recall the Dehn twists about a SCC γ ⊂ Σg. Find a tube (or ‘collar’)

neighborhood N of γ, view N = S1 × [0, 1], and map

S1 × [0, 1]→ S1 × [0, 1]

(z, t) 7→ (z · e2πit, t).

We note that this map not only preserves the boundary and the annulus between, it also

preserves the circle foliation of N .

Now let S2 ⊂M4 be an embedded (−2) 2-sphere. We claim that, a tubular neighborhood

N = NbhdM (S2), viewed as a D2-bundle over S2, is isomorphic (as a D2-bundle) to the unit

disk bundle TS2
≤1 = {(u, v) ∈ S2 × R3 : u ⊥ v, ‖v‖ ≤ 1}. Name the isomorphism i.

i :

D2 N = NbhdM (S2)

S2

∼=
D2 TS2

≤1

S2

Exercise 7.3. Prove the claim.
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Now construct a map h′ ∈ Diff+(TS2
≤1), which is identity on the boundary. (After that,

extend (by identity) to M4, and call that the Dehn twist along S2.) The map h′ is defined

by the time π map of the geodesic flow on S2:

ϕ : TS2 × R→ TS2,

((u, v), t) 7→


parallel translate of v

along the unique geodesic

through u and tangent to v

 .

So h′(u, v) := ϕ((u, v), π) = (u′, v′) is pictorially described as follows.

Define h(u, v) = h′(−u,−v). With this gadget, we can clarify what the Dehn twist TS2 is:

TS2(m) =

m (m /∈ N)

i ◦ h ◦ i−1 (m ∈ N)

Proposition 7.4. The Dehn twist h constructed above has the following properties.

• The map h is the identity at the unit (co)tangent bundle TS2
=1.

• The map h is the antipodal map on the zero section TS2
=0 = S2.

• The map h commutes with the involution (u, v) 7→ (−u,−v) on TS2
≤1.

Remark. Technically we demand TS2
≤1 to be a subbundle of the cotangent bundle T ∗S2,

to talk about sympletic strucures. Too late for a fix though!

We have T 2
S2 isotopic to the identity. (cf. The nontrivial element of SO(3)!) Further-

more, TS2 induces a reflection on H2(M ;Z). To elaborate, let v = [S2] ∈ H2(M ;Z). Within

H2(M ;R),xv (TS2)∗ is perserving v⊥ and flipping v 7→ −v.

Remark. One can make the twist TS2 to be a symplectomorphism.

More pioneering works can be found under the names C. T. C. Wall, or J. Milnor.

xvremove the torsion if necessary
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7.2.1 Mapping Class Group, for Simply Connected cases

Theorem 7.5 (Freedman 1982; Quinn 1986). Let M4 be a closed oriented simply connected

manifold. Then the natural homomorphism

Mod(M)→ O(HM )

[f ] 7→ f∗ � H2(M ;Z)

is an isomorphism. Here, we include mapping classes that reverses the orientation.

Here, O(HM ) is the group of isometries H2(M ;Z)→ H2(M ;Z) that preserves the inter-

section form.

Recall a result of Borel: if G = G(R) is a semisimple real Lie group, like O(p, q)(R), and

G(Z) < G(R) is an ‘arithmetic group,’xvi has a cofinite volume and is discrete.

Corollary 7.6. The group Mod(M) is arithmetic in O(HM ⊗ R).

Example 7.7. 1. ConsiderQP2 = (1). Because P2 is simply connected, we have Mod(P2) ∼=
Aut(Z, (1)) = Z/2Z. This is generated by τ the complex conjugation map.

(But what about π0(Diff+(P2))?—M. Klug)

2. Consider M = S2 × S2 has HM = U . Its isometry group is O(U) = Z/2Z× Z/2Z, the

Klein group.

Exercise 7.8. Find a diffeomorphism in each mapping class.

3. Let M = aP2#bP2. Then Mod(M) = O(HM ) = O(a, b)(Z).

4. For a K3 surface M , Mod(M) = O(2E8(−1)⊕ 3U) ⊂ O(3, 19)(R).

(By the way, any trace of E8 manifolds within a K3 surface?xvii)

Remark. It seems like no progress past the Freedman–Quinn isomorphism is made on the

study of topological mapping class groups in 4-manifolds.

7.2.2 Smooth versus Topological

Now we compare the Mod(M) defined in differential and topological categories.

Theorem 7.9 (Ruberman, 1990s). Let M = aP2#bP2, where a = 2n and b = 10n + 1,

n > 1 (for instance, 4P2#21P2 for n = 2). Then the kernel

ker(π0(Diff+(M))→ π0(Homeo+(M)))

is nontrivial, and in fact infinitely generated.

This is the only example known of the property, i.e., having a ‘big’ kernel.

xviTheorem (Margulis). If G(Z) < G(R) is a lattice, the commensurator subgroup of G(Z) in G(R) is

dense iff G(Z) < G(R) is arithmetic.
xvii. . . digging out a fossil?
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7.2.3 Symplectic versus Smooth

Let (M,ω) be a symplectic 4-manifold.

Theorem 7.10 (Siedel, 1997). For certain special M , and S ⊂ M a Lagrangian (−2) 2-

sphere, let TS denote the Dehn twist along S. Then even though T 2
S = 1 ∈ π0(Diff+(M)),

the map T 2
S has infinite order in π0(Symp+(M,ω)).

Remark. We do not even know what Diffc(R4) (compactly supported diffeomorphism

group) is, i.e., the ‘local’ mapping classes.

7.3 What are left to do for Mapping Class Groups of simply con-

nected 4-manifolds

As proposed in the “Farb–Looijenga program.”

Topological Problems

Problem 1 (The Realization Problem). For all matrices A ∈ O(HM ), give an explicit

diffeomorphism (or homeomorphism) f : M →M such that f∗ = A.

Here, there is no guarantee that a smooth representative exists. So the problem essentially

throws in that too. Whether we have an topological mapping class that cannot be smoothed

is not (yet) transparent.

The problem is find a method (algorithm?) whose input is the action of H2(M ;Z), and

the output is an action on M .

We note that Freedman already proved surjectivity (the injectivity is attributed to

Quinn), but in a very non-explicit way. His classification theorem, some abstract machinery,

(h-)cobordism theory, . . .

Problem 2 (Thurston-type Normal Form).

The essence is to go beyond “everything is a product of Dehn twists.”

Problem 3 (Nielson Realization Problem). Also to be called section problems. For which

subgroups G < Mod(M), do we have a section G→ Diff(M) of π : Diff(M)→ Mod(M)?

Geometric—Differential or Algebraic

Problem 4 (Preserving Structures). Characterize which A ∈ O(HM ) has a representative

f ∈ Diff(M) (i.e., f∗ = A) that preserves some structures. Examples:

• Some complex structures.

• Some special (Ricci-flat, Einstein, Kähler–Einstein, . . . ) metrics.
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• Some foliations (possibly with singularities).

• . . . more to be introduced later.

One typical way to view all this is to invoke some fixed point theorem.

Problem 5 (Best Representative). For each mapping class, what is the representative that

minimizes the dynamical entropy?

8 220805-3: Case Study: the Mapping Class Group of

the Blow-ups (of a plane)

8.1 (Complex) Blowups

Consider C2 and x ∈ C2, x 6= 0. Then there exists a unique line ` passing the origin and x.

Then we define B = Bl0C2 (the blow-up of the plane at a point) as

B = {(x, `) ∈ C2 × P(C2) : x ∈ `} ⊂ C2 × P1.

Call the blow-down map π : B → C2, (x, `) 7→ x.

First to mention is that B is a 2-dimensional complex manifold. Next to mention is that

we have a dictionary for the fibers: for x ∈ C2,

π−1(x) =

x (x 6= 0),

CP1 (x = 0).

The exceptional fiber, e = π−1(0), is called the exceptional divisor in B. The restriction

π|B\π−1(0) : B \ π−1(0)→ C2 \ {0} is a biholomorphism.
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(A classical picture of a blow-up by I. Shafarevich)

Suppose we have a nodal curve C ⊂ C2, lifted to the blow-up π−1(C) ⊂ B. Then

(removing e and taking the closure) we get a smooth curve that only crosses e at two points

(that corresponds to the nodal directions). So blowing up is a way to remedy singularities.

General setting Let M be a complex surface and p ∈M be any point. Pick a coordinate

neighborhood (U, z) centered at p, so that z(p) = 0 and z(U) ⊂ C2. Let

U ′ = {(x, `) ∈ U × P1 : x ∈ `}

and let π : U ′ → U be the first projection. Then π|U ′\{p}×P1 → U\{p} is a biholomorphism.

Replacing U to U ′ we have the blow-up of M at p by

Blp(M) = (M \ U) ∪∂U=∂U ′ U
′,

and define π : Blp(M)→M extending π : U ′ → U . Quick properties:

• We have Blp(M) a complex manifold.

• If M is smooth projective variety, then so is Blp(M).

• We have the exceptional divisor π−1(p) ∼= P1 ⊂ Blp(M).

• As a complex manifold, Blp(M) does not depend on the choice of neighborhood U of

p. (See [Griffith–Harris].)

Proposition 8.1. Let M be a complex surface, p ∈M . Let M ′ = Blp(M). Then as a smooth

manifold, we have the followings.

1. We have M ′ diffeomorphic to M#CP2.

2. We have QM ′ = QM ⊕ (−1).

The (−1) summand is generated by the exceptional divisor. That is, if e = π−1(p) is the

exeptional divisor, we have e2 = −1 (cf. a note in the course webpage).xviii

xviiiEssentially, we use the fact that [e] (current of integration, viewed as a de Rham class) is cohomologous

to −ωFS (the Fubini–Study metric on e = P1), and evaluate e2 =
´
e(−ωFS) = −vol(e) = −1. Another way

to view −ωFS is think this as the Chern class of the tautological line bundle over e = P1.
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Example 8.2. Let M = Bl{p1,p2}(P2). Denote ei = π−1(pi), so that we have e2
1 = e2

2 = −1.

Then we have [e1]− [e2] ∈ H2(M ;Z)(= Z3). Then one evaluates

(e1 − e2) · (e1 − e2) = e2
1 + e2

2 = −2,

and it is not very hard to see that [e1]− [e2] is represented by a sphere [S2],xix and this S2

is thus a (−2) 2-sphere.

9 220806: (Seraphina Lee) Mapping Class Groups of del

Pezzo Manifolds

We will focus on the topology and mapping class groups of the del Pezzo manifolds; known,

unknown, and open results.

Definition 9.1. A del Pezzo manifold M is either P1 × P1 or BlnP2, where 0 ≤ n ≤ 8.

Remark. 1. As projective varieties, the list is precisely those smooth projective surfaces

whose anticanonical bundle is ample. (Provided that the blowing up points are in

general position, if exist any.)

2. Topological behaviors change once we hit n = 9. (We will come back to this threshold

later.)

9.1 As a Smooth Manifold

Lemma 9.2. There is a diffeomorphism BlnP2 ∼= CP2#nCP2.

Proof. (sketch) We know that exceptional divisors E has E · E = −1. Taking a normal

neighborhood of each E, we have CP2 \ ∗ diffeomorphically.

This concludes us that, locally, blowup constructions are removing a neighborhood of a

point and glue CP2 \ ∗ at there.

Definition 9.3. We denote Mn := CP2#nCP2.

9.2 Algebraic Topology on del Pezzo manifolds

First to note is that π1(Mn) = 0. This is done by the van Kampen theorem; apply Mn =

(Mn−1 \ ∗) ∪ (CP2 \ ∗) inductively.

Second to note is that H2(Mn) ∼= H2(CP2)⊕H2(CP2)⊕n, which comes from the Mayer–

Vietoris sequence. We denote H2(CP2) = Z.{H} and H2(CP2)⊕n = Z.{E1, . . . , En} for the

generators.

xixMake a connected sum between spheres e1, e2, by a tube placed along a curve connecting p1 ∼ p2.
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Derived from this is the description of the intersection form:

QMn = QCP2 ⊕ nQCP2

= (1)⊕ n(−1) = diag(1,−1, . . . ,−1︸ ︷︷ ︸
n

).

A schematic picture of Mn:

Bln(P2)

H

∗p2

p1∗

There we ‘by picture’ know that H · Ek = 0 for any k, and Ej · Ek = 0 whenever i 6= j.

9.3 Mapping Class Group

By Freedman–Quinn isomorphism, as π1(Mn) = 0, we know that

Mod(Mn) ∼= Aut(H2(Mn), QMn) = O(1, n)(Z).

To elaborate, we recall that

O(1, n)(Z) =

{
A ∈ GLn+1(Z) : A

[
1 0

0 −In

]
AT =

[
1 0

0 −In

]}
.

Example 9.4. Some elements of O(1, n)(Z) may be described as follows. Take any v ∈
H2(Mn;Z) such that v2 = ±1 or ±2.xx Define the reflection

Refv(w) = w − 2(w · v)

v · v
v.

This map Refv is in O(1, n)(Z), and has order 2. In case if v2 = −2, we can reduce to

Refv(w) = w + (w · v)v.

Example 9.5. Now think of v = E1 − E2 ∈ H2(Mn). Then we have a linear map by the

reflection Refv � H2(Mn). There we have an invariant space decomposition:

H2(Mn) = Z.{H,E3, . . . , En} ⊕ Z.{E1, E2},

where the first summand collects elements that are ⊥ v, and thus Refv acts as the identity.

For the second summand, we have Refv(E1) = E2 and vice versa.

We had talked that E1 − E2 is represented by a 2-sphere S2 in Mn. In fact, Refv is the

homology action of the Dehn twist of that sphere.
xxFor higher self-intersections, we have no guarantee that Refv sends integral classes to integral classes.
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9.4 Diffeomorphisms of del Pezzos

Example 9.6 (Linear diffeomorphisms on M0). Let g ∈ Aut(CP2) = PGL3(C). Then g∗ = 1

on H2(CP2). But for the complex conjugation f � CP2, we have f∗ = −1 on H2(CP2) (as

seen earlier).

Example 9.7 (Glueing for M1). Suppose we glue ϕ ∈ Diff+(CP2) and ψ ∈ Diff+(CP2) (to

be specified later). Then we have Φ ∈ Diff+(M1 = CP2#CP2) constructed as follows.

Take ϕ[X : Y : Z] = [−X : Y : Z], and ψ[X : Y : Z] = [X : Y : Z]. We know how they

act on H2(P2) and H2(P2) respectively, and we further know that ϕ,ψ have order 2.

Note also that Fix(ϕ) = CP1 and Fix(ψ) = RP2. They are all 2-dimensional manifolds,

and we can take 4-balls D4
1 and D4

2 passing through these fixed loci, and each are ϕ- and

ψ-invariant, respectively.

Then we have

M1 = (CP2 \D1) ∪∂D1∼∂D2 (CP2 \D2),

where the gluing is done in an orientation reversing way and Z/2Z-equivariantly. Then

Φ ∈ Diff+(M1), with this picture, is described as

Φ =

ϕ (on CP2 \D1),

ψ (on CP2 \D2).

Then again as a diffeomorphism, Φ2 = Id, and the homology action is Φ∗ = ϕ∗ ⊕ ψ∗ �
H2(CP2)⊕H2(CP2). Because ϕ∗ = 1 and ψ∗ = −1 on H2’s, we conclude that Φ∗ = RefE1

,

where E1 is the generator of H2(CP2).

9.5 A Rudiment of Hyperbolic Spaces and its Isometries

One standard model of the hyperbolic space is to use the hyperboloid model. This is a subset

of Rn+1 characterized with the symmetric bilinear form Qn = diag(1,−In), and define

Hn := {p = (x, y1, . . . , yn) ∈ Rn+1 : Qn(p, p) = 1, x > 0}.
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On TpHn, p ∈ Hn any, Qn|TpHn (resp. −Qn|TpHn) defines a negative-definite (resp.

positive-definite) form. By this we define a hyperbolic metric on Hn, whose isometry group

is clear:

Isom+(Hn) = O+(1, n)(R),

the set of (n+1)× (n+1) matrices which preserves Qn and preserves the upper hyperboloid

sheet.

By this we obtain

O+(1, n)(Z) := O(1, n)(Z) ∩O+(1, n)(R),

a group that naturally acts on Hn. The group O+(1, n)(Z) is an index 2 subgroup of

O(1, n)(Z) ∼= Mod(Mn).

The reflection map Refv acts by a hyperbolic reflection across v⊥ on Hn ⊂ Rn+1, and

virtually dominates the group O+(1, n)(Z) for small n’s:

Theorem 9.8 (Vinberg 1972). For any n ≤ 17, the group O+(1, n)(Z) has a finite index

subgroup generated by hyperbolic reflections.

The theorem is no longer true for bigger n’s.

Classification of Isometries of Hn is done as follows.

1. Elliptic isometries. This refers to isometries that has a fixed point in Hn (e.g., finite-

order isometries).

2. Hyperbolic isometries. This refers to isometries that acts by translation along an axis,

thus fixing 2 points on ∂Hn.

3. Parabolic isometries. This refers to isometries which are neither elliptic nor hyperbolic.

This fixes one point on ∂Hn.

Remark (B. Farb). This trichotomy is one of the motivating remarks of the Nielson–

Thurston classification, for n = 2. This lures us to guess similar case occurs for the del

Pezzo manifolds Mn’s!

Question 9.9 (open; B. Farb). • What is the relation between the hyperbolic space Hn

and Mn, other than one designated by Freedman–Quinn?

• What is a space of structures on Mn on which Mod(Mn) acts, analogous to the iso-

metric action of Mod(Σg) in Teich(Σg)?
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9.6 Diffeomorphisms versus Mapping Classes

Denote the natural quotient map qn : Homeo+(Mn) → Mod(Mn), which is surjective (‘by

definition’.) We further may ask, whether each mapping class can be realized by a diffeo-

morphism.

Theorem 9.10 (Wall 1964). For all 0 ≤ n ≤ 9, we have qn|Diff+(Mn) surjective.

Proof. (sketch) For n’s in the range, we can generate the mapping classes by reflections:

Theorem 9.11 (Wall 1964). For n = 2, we have O+(1, 2)(Z) = 〈RefH−E1−E2
,RefE1−E2

,RefE2
〉.

For 3 ≤ n ≤ 9, we have O+(1, n)(Z) = 〈RefH−E1−E2−E3
,RefEk−Ek+1

,RefEn
〉 where

k = 1, 2, . . . , n− 1.

For n ≥ 3, one can show that H −E1−E2−E3
xxi and Ek−Ek+1 can be represented by

(−2) 2-spheres in Mn. Thus Refv’s of this sort are given as Dehn twists. The reflection RefEn

can be realized using the gluing construct above, and can be smoothed to a diffeomorphism.

Thus we have lifted all mapping class generators to diffeomorphisms!

For large n’s, the stituation is very different.

Theorem 9.12 (Friedman–Morgan, 1988). xxii For n ≥ 10, the image qn(Diff+(Mn)) ⊂
Mod(Mn) is an infinite-index subgroup.

Remark. Compare this with the result of Vinberg for n ≤ 17. This means there are some

reflections that cannot be realized as a diffeomorphism!

9.7 Elliptic Diffeomorphisms

Now let us focus on elliptic matrices in O+(1, n)(Z), which corresponds to finite-order map-

ping classes in Mod(Mn) for n ≤ 8. Recall the

Problem 6 (Nielson Realization Problem). Let G ≤ Mod(Mn) be finite. Does there exist a

lift of G to Diff+(Mn) under the homomorphism qn : Homeo+(Mn)→ Mod(Mn)?

As a simplest case, consider G = Z/2Z ≤ Mod(Mn). For smaller n’s, it is verified to be

affirmative.

Theorem 9.13 (L. 2022). For 0 ≤ n ≤ 8, any mapping class g ∈ Mod(Mn) of order 2 is

represented by an order 2 diffeomorphism.

Moreover, we can find a representative of g in one of the three classical involutions

(Geiser, Bertini, or de Jonquieres) seen in the birational geometry if we have the followings.

1. The class g is in O+(1, n)(Z) ⊂ Mod(Mn).

xxiFirst merge H − E1 − E2 to a sphere, and then merge E3.
xxiiBeware the spelling, Friedman vs. Freedman.
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2. The class g does not preserve any isometric decomposition H2(Mn;Z) = H2(M) ⊕
H2(#kCP2), where k ≥ 1 and Mn is del Pozzo.

Remark. The involutions mentioned preserve some complex structure on Mn. In fact,

• the Geiser involution is defined on Bl7(CP2),xxiii

• the Bertini involution is defined on Bl8(CP2), and

• the de Jonquieres involution is defined on Bl2n+1(CP2) (n ≥ 2).

Corollary 9.14. All Dehn twists on Mn with n ≤ 8 are topologically isotopic to an order 2

diffeomorphism.

This result is more like an application of the Freedman–Quinn isomorphism, thus the

isotopy is less explicit. The existence of smooth isotopy is not yet known.

Remark. Dehn twists are not isotopic to any diffeomorphism of finite order for the following

cases.

1. K3 surfaces (Farb–Looijenga 2021).

2. Spin 4-manifolds (Konno 2022).

The landscape awaits more discovery. For instance, we do not know analogous result for

order 3 classes!

9.8 Nonrealizability

We will now suggest a contrary result from above. For instance, we will show that the finite

group G = 〈RefH−E1−E2 ,RefE1−E2〉 ⊂ Mod(M2) has no lift to Diff+(M2).

The reflection generators mentioned above are commutative as mapping classes. Thus

the puncline of the nonrealizability in question is that any lift of the reflections are not

commutative.

We introduce some tools to discuss this.

Theorem 9.15 (Edmonds 1989). Suppose G := Z/pZ yM4, where M is a closed oriented

simply connected 4-manifold, and p is a prime < 23. Then as a G-representation, we have

H2(M) ∼= Zt ⊕ Z[ζp]
c ⊕ Z[G]r,

where Zt is the trivial representation, Z[ζp] is the ζp-representation of G, and Z[G] is the

standard representation.

xxiiiThere are more contexts where Geiser and Bertini involutions are well-defined, perhaps with smaller

blow-ups.
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Furthermore, if we say F = Fix(G) ⊂ M , then if F 6= ∅, we can compute mod p Betti

numbers βk(F ) = dimFp Hk(F ;Fp) as

β1(F ) = c, β0(F ) + β2(F ) = 2 + t.

Remark. If a finite group G acts smoothly and orientation preserving on M4, then Fix(G)

will be the disjoint union of surfaces and points. (This is a general fact about smooth finite-

group actions on a manifold. In this context, the punchline is that we are removing circles

in the ist.)

Theorem 9.16 (Hirzebruch G-signature Theorem). Let G = Z/pZ yM4 smoothly, where

M4 is a closed oriented 4-manifold. Then we have the identity

p · σ(M/G) = σ(M) +
∑

C⊂Fix(G)
dimR C=2

defC +
∑

{z}⊂Fix(G)
dimR{z}=0

defz,

where

• σ(M/G) is the signature of QM on H2(M)G (the G-fixed homologies),

• σ(M) is the signature of QM ,

• defC :=
p2 − 1

3
[C]2,xxivxxv and

• defz is a quantity that vanishes when p = 2, determined by the action of Gy TzM .

Remark. The theorem is meant to be a formula analogous to p · χ(M/G) = χ(M) (Euler

characteristics), but with many correction terms.

Now we sketch the nonrealizability with the above gadgets.

Proof. (sketch) Suppose that there exists f, g ∈ Diff+(M2) so that [f ] = RefE1−E2
and

[g] = RefH−E1−E2 , while 〈f, g〉 ∼= Z/2Z× Z/2Z.

By Edmonds’s theorem, we have Fix(f) be a disjoint union of S2 and a point, or just

3 points. By the G-signature theorem, we restrict Fix(f) to be a union of S2 and a point,

where [S2]2 = 1.

Because fg = gf , we have g acting on Fix(f) = S2 t ∗. By dimension concerns, we see

that g leaves S2 invariant, and furthermore we have g∗[S2] = ±[S2].

Now note that g∗ � H2(M2), that has ±1 eigenspaces

H2(M2) = Z.{H − E1 − E2} ⊕ Z.{H − E1, H − E2}.

One can check that neither eigenspace contains a class with self intersection 1. But then

where do we find [S2] such that [S2]2 = 1 and g∗[Ss
2] = ±[S2]?

xxivdef stands for ‘defect.’
xxvWe note that only orientable C appears here.
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9.9 Parabolic Diffeomorphisms

Recall that a parabolic hyperbolic isometry fixes a unique point of ∂Hn. In the view of

the hyperboloid model, this unique point is represented by a line R.v where v ∈ Rn+1 has

Qn(v, v) = 0.

If we bring this to homology actions, a parabolic mapping class fixes a line spanned by

v ∈ H2(Mn;R). One can elaborate this in a context more closer to the mapping class group.

• In O+(1, n)(Z), a parabolic class fixes some v ∈ H2(M2;Z), v2 = 0.

• In Mn, v is represented by some embedded surface S ⊂Mn.

Now ideally, we want a diffeomorphism representing a parabolic mapping class that preserves

the surface, not just the class v. (For that purpose, we construct a fiber bundle that will

sketch the preservation of the surface better.)

One way in which this class v ∈ H2(Mn;Z) arises is the ‘conic bundle.’ To speak of

it, we are going to construct a map (a pencil !) π : Mn → CP1 where each fiber π−1(p) is

homologous to CP1 (except for finitely many p). The homology class of the generic fiber

π−1(p) is in fact v, the class that we are interested in.

Example 9.17 (n = 1). We set the map

π : M1 = Bl{p}(CP2)→ CP1,

viewing that CP1 as the set of lines in CP2 that passes through p. For q ∈ M1, we define

π(q) to be the line passing p and q. (For q in the exceptional divisor, we just load the line

from p in that direction.)

Then we have π−1(L) = L ⊂M1, for L any line passing p.

The pencil π turns M1 into a CP1-bundle over CP1. Topologically, recall the unique

nontrivial S2-bundle over S2. Furthermore, the class v = [π−1(L)] ∈ H2(M1) has v2 = 0.
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Example 9.18 (n ≥ 2). We sketch how to generalize this construct for Mn. View Mn =

Bln−1(Bl{p}(CP2)). Then we define a map

π : Mn → Bl{p}(CP2)→ CP1,

as follows. If q ∈Mn is not in one of the (n− 1) exceptional divisor, then we let π(q) for the

line passing p and q. If q lies on the (n− 1) exceptional divisors, say q ∈ Ek (corresponding

to pk), then we simply map to the line ppk.

If we write Fk = ppk, then we see that π−1(ppk) = Ek ∪ Fk(= CP1 ∪∗ CP1). This describes

all the finite exceptional points where the fiber is not CP1, and will be called singular fibers.

Now we can describe the parabolic diffeomorphisms. Some auxiliary constructs (applica-

ble for odd n’s):

1. There exists a complex automorphism Φ on Mn such that

• smooth fibers CP1 of π : Mn → CP1 are restricted to an order 2 diffeomorphism,

and

• singular fibers CP1 ∪∗ CP1 of π are swapping the components.

2. There exists a diffeomorphism Ψ on Mn such that, on each normal neighborhood of

Ek (k ≥ 2), we act by RefEk
, and identity elsewhere.xxvi

Then the map F = Ψ ◦ Φ (1) preserves all fibers of π outside of the normal neighborhood

of Ek, and (2) has the infinite order action on H2(Mn). From (1), we see that F∗ is the

demanded parabolic mapping class fixing v.

9.10 What about the product of lines?

It is known that Bl{∗}(P1 × P1) ∼= Bl2(CP2). So after the blow-ups, we see the pictures that

we had already seen. (And as QP1×P1 = U , the topological considerations are rather trivial

before the blow-ups.)

xxviA moment to recall the Dehn twist, except that the spine of the twist is a (−1) 2-sphere.
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10 220807-1: Case Study—Rational Elliptic Surfaces

The content of this section is due to a joint work with Eduard Looijenga.

10.1 Setups

Let M = Bl{p1,...,p9}(P2) ∼= CP2#9CP2xxvii be the manifold of our interest, a result of

blowing up 9 points of a projective plane. Let π : M → P2 be the natural blow-down map.

Denote ei = π−1(pi) ∼= CP1 for the exceptional divisors.

The intersection form of M is QM = (1) ⊕ 9(−1). As π1(M) = 0, by Freedman–Quinn

isomorphism, we have an isomorphism

Mod(M)
∼−→ Aut(H2(M ;Z), QM ) ∼= O(1, 9)(Z).

A natural question, asked in Seraphina Lee’s lecture yester day, is as follows.

Question 10.1. For each A ∈ O(1, 9)(Z), do we have a diffeomorphism f ∈ Diff+(M) such

that f∗ = A?

10.2 Hyperbolic isometry perpective

Because O(1, 9)(Z) ⊂ O(1, 9)(R) = Isom(H9), we have three cases for A ∈ O(1, 9)(Z).

1. Matrix A has a finite order.

2. Matrix A is parabolic type (i.e., A fixes a unique point on ∂H9).xxviii

3. Matrix A is of hyperbolic type (translating along a unique geodesic).

Question 10.2 (Open). Explicitly construct f in cases 1 and 3 above.

An easy note is that, if we have a finite-order diffeomorphism, this should preserve a

metric. (Take the Birkhoff average.) So that will restrict the candidates for the case 1.

Today, we will focus on explicitly constructing f with f∗ = A in case 2.

Some Fact from Hyperbolic Geometry There exists a unique, up to a conjugation

in O(1, 9)(Z), maximal parabolic subgroup Γ < O(1, 9)(Z), given as the stablizer of a zero-

intersection vector v ∈ (1)⊕ 9(−1) (i.e., v2 = 0 and γ.v = v for all γ ∈ Γ).

Proof. A general fact about hyperbolic finite-volume noncompact manifold Hn/Λ is, it con-

tains finitely many cusps bounded by a flat orbifold En−1/∆ (and a compact piece outside

of the cusps).

So we study H9/Γ, and study the number of cusps; should be one.

xxviiThis manifold, or manifolds of this sort, is called a rational elliptic surface.
xxviiiPicture to have in mind: horocycles flows, and the ‘center’ of the horocycles.
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Becaues Γ = StabO(1,9)(Z)(v), we have the following exact sequence.

1 v⊥/Z.v StabO(1,9)(Z)(v) O(v⊥/Z.v) 1

Here, the group v⊥/Z.v ∼= Z8 (in fact, E8(−1) as a lattice) represents the sheering map.

Example 10.3. Think of the action [ 1 1
0 1 ] y H2. At each line y = c, we observe that the

action of this matrix is given by x 7→ x+ 1. If we view this in H2/SL(2,Z), then we see that

this ‘invariant locus’ y = c appears as smaller circles (of length O(e−c)).

Likewise, we consider the action A = [ 1 a+bi
0 1 ] y H3 = {(x0, x1, x2) ∈ R3 : x0 > 0}, with

A ∈ PSL2Z[i]. We have invariant (Euclidean!) planes x0 = c that (1) A acts as sheerings on

each plane, while (2) giving square tori in the quotient H3/PSL2Z[i].

The group O(v⊥/Z.v) = O(0, 8)(Z) sits in O(8), a compact group. As a discrete subgroup

of a compact group, this is necessarily a finite group! That is same as the Weyl group W (E8)

of the E8 Dynkin diagram.

Exercise 10.4. Given A ∈ Stab(v), construct a diffeomorphism f ∈ Diff+(M) with f∗ = A.

10.3 Classical Construction

Take two (generic) smooth cubic curves {P = 0} and {Q = 0} in CP2. (That is, P,Q are

cubic homogeneous polynomials here.) Consider the pencil E[s:t] = {sP + tQ = 0}, where

[s : t] ∈ P1.

By Bezout, we have the intersection E[1:0]∩E[0:1] consisting of 9 points p1, . . . , p9 (count-

ing multiplicities).xxix But as P (pi) = Q(pi) = 0, we see that these points are all in every

E[s:t].

Furthermore, E[s:t]’s cover P2: for each point p ∈ P2, we have p ∈ E[−Q(p):P (p)] unless

(∃i)(p = pi). In fact this readily defines a map

π : P2 99K P1,

p 7→ [−Q(p) : P (p)],

where 99K means we do not define π at some points or curves. In our context, this exception

set is precisely {p1, . . . , p9}.
No worries, as the map π can be extended to M = Bl{p1,...,p9}P2 → P1 which is globally

well-defined! Properties (given that P,Q are generic):

• We have π−1([s : t]) = E[s:t] except for 12 valuesxxx of [s : t] ∈ P1. (Recall that E[s:t]

is a cubic curve and thus diffeomorphic to a torus.)

xxixPick P and Q generic enough so that our list of 9 points are all distinct.
xxxCount the number of lines [s : t] such that E[s:t] is a singular cubic. That is, solve the resultant

Res(s∇P + t∇Q) = 0; this has degree 12.
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• At each 12 singular fibers, E[s:t] is a rational nodal curve, also called a ‘fishtail fiber.’

This can be pictured as a degenerate torus.

This construction gives us M to be an elliptic fiberation.

Remark. The space M1 = H2/PSL2Z is the classifying space of the torus bundle. That is,

we have a bijection 
T2 Y

B

 bij.←−→ [B,M1].

For the elliptic fibration discussed above, we can find this in [P1,M1], where M1 = M1∪{∞}.
The fibration π : M → P1 corresponds to a degree 12 map P1 → M1. (Simply because

the preimage of the singular torus ∞ ∈ M1 has size 12. Or could be found by comparing

Euler classes?)

Remark (A secret recipe). One can pullback M
π−→ P1 by the map sq : P1 → P1, [1 : z] 7→

[1 : z2], to build a new elliptic fibration M ′ → P1. This M ′ is a K3 surface.

M ′ M

P1 P1

sq∗π π

z 7→z2

10.4 Local Monodromy

Now we study the fibration π : M → P1 in terms of the monodromy. To model the behavior

of π near the singular fibers, we consider a fibration

Y

4,

$

where Y is a complex 2-manifold and 4 ⊂ C is the unit disk. Suppose $−1(z) = T2 for

z 6= 0 and $−1(0) is a singular torus (‘croissant’).

Becaues Y \$−1(0)
$−→ 4∗ is a smooth T2-fiber bundle, we have the natural monodromy

π1(4∗)→ Mod(T2).
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But since all the tori we see are staying near the cusp∞ ∈M1, we get interested in parabolic

elements in SL2(Z) fixing ∞ ∈ ∂H2, we have the following claim.

Claim. A local monodromy $ : Y → 4 is conjugate to [ 1 N
0 1 ] ∈ SL2Z = Mod(T2), for some

N 6= 0.

Remark (Side note). Recall the family of elliptic curves

Eλ : y2 = x(x− 1)(x− λ).

The hyperelliptic involution (x, y) 7→ (x,−y) then folds Eλ to Ĉ 2-to-1, with singular values

0, 1,∞, λ. We can also think of the family

M = closureP2×(C\{0,1})({([x : y : 1], λ) : y2 = x(x− 1)(x− λ)}),

which gives a T2-fiber bundle.

Exercise 10.5. Study the monodromy π1(P1 \ {0, 1,∞})→ Mod(T2) = SL2Z.

(Relevant to this is the Modular lambda function λ : H2 → C \ {0, 1} such that the

complex torus C/Z.{1, ω} is identified with the elliptic curve Eλ(ω). The map λ is invariant

under Γ(2) = {A ∈ SL2(Z) : A ≡ I2 (mod 2)} action, and as H2/Γ(2) = P1 \ {0, 1,∞} =

C \ {0, 1} (known, from study of triangle groups), the function λ is a universal cover.)

Theorem 10.6 (Moshiezon). Suppose an elliptically fibered Bl9(P2) has the following local

monodromy data.

• Matrices A1, . . . , A12 ∈ SL2Z, each conjuate to [ 1 1
0 1 ], and

• we have the product
∏12
i=1Ai = I.

Then by braid moves

(T1, . . . , T12) 7→ (T1, . . . , Ti−1, Ti+1, Ti+1TiT
−1
i+1, Ti+2, . . . , T12),

we can set the matrices (A1, . . . , A12) = ([ 1 1
0 1 ], [ 1 0

−1 1 ], [ 1 1
0 1 ], [ 1 0

−1 1 ], . . .).

52

https://en.wikipedia.org/wiki/Modular_lambda_function


Now let us get back to the elliptic fibration π : M → P1, p 7→ E[−Q(p):P (p)] constructed

with a pencil. We claim:

Claim. Each exceptional divisor ei gives a (holomorphic) section σ([s : t]) = ei ∩E[s:t]
xxxi of

π : M → P1, which gives a 2-sphere in M .

Proof left as an exercise.

Remark. Another interesting construction comes from a line `ij = pipj . Then for each

E[s:t], we intersect `ij on 3 points; call σij([s : t]) to be the third point (in M).

Similarly, we can construct a section from a conic Cijklm = Conic(pi, pj , pk, pl, pm). For

each E[s:t], we intersect Cijklm ∩ E[s:t] on 6 points; call σijklm([s : t]) to be the sixth point

(in M).

10.5 Back to Parabolic realization

Recall that we had a zero intersection class v and to realize f ∈ Diff+(M) so that f∗ ∈
Stab(v).

Remark. Any section σ of π : M → P1 gives rise to the group structure on each fiber,

by setting σ([s : t]) ∈ E[s:t] as the neutral elementxxxii of the addition. On singular fibers,

except that our group structure is now C×, the same story happens.

xxxiWe know that E[s:t] passes pi, in a direction vi. The intersection ei ∩ E[s:t] is precisely (pi, vi).
xxxiia.k.a. additive identity
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Given two sections σ1, σ2, we define the map Transσ1−σ2
∈ Diff(M), defined on fibers of

π as follows. On E[s:t], map

Transσ1−σ2(z ∈ E[s:t]) = z +σ2[s:t] +σ1[s : t],

where +p means the group law on E whose neutral element is p ∈ E.xxxiii The map is called

the Mordell–Weil translations.

Now we pick an isotropic (zero-intersection) vector v as v = [F ], where F is a fiber in

an elliptic fibration. We claim that any Mordell–Weil translation is a nontrivial map(ping

class) that preserves v. Indeed, for sphere classes [σi(P1)] ∈ H2(M ;Z) we have

(Transσ1−σ0)∗[σ0(P1)] = [σ1(P1)].

We may set [σ1(P1)] 6= [σ0(P1)], by setting σi’s coming from the sections risen from different

exceptional divisors; thus Transσ1−σ0
gives a nontrivial class. Evidently Transσ1−σ0

preserves

fibers, so we see that v is kept (literal invariance).

Claim. Recall the sections σi risen from exceptional divisors ei. We have the mapping classes

[Transσi−σj ] ∈ v⊥/Z.v.

Exercise 10.7. Prove that, in terms of the basis [H], [e1], . . . , [e9] (recall: [H] · [ei] = 0,

[ei] · [ej ] = −δij), the fiber class is found as

[F ] = 3[H]−
9∑
i=1

[ei].

Exercise 10.8 (Mordell–Weil translation). Let E be a smooth cubic curve in P2. For

p, q ∈ E, let j(p, q) denote the 3rd point of the intersection pq ∩ E.

(1) Let s ∈ E be a point. Define p+s q = j(s, j(p, q)). Show that (E,+s) is an abelian group

with the identity element s.

(2) Fix 0 ∈ E. Show that Transσ1−σ2
(p) := p+σ2

σ1 = p+0(σ1−0σ2). [Best done by pictures!]

By this the notation σ1−σ2 should make sense in the definition of the translation map.

Summarizing the observations, we announce a

Theorem 10.9 (F.–Looijenga). Let M = Bl9(P2). Let ϕ ∈ Mod(M) such that ϕ is of

parabolic type, with the following property. We have v ∈ HM , v 6= 0, v2 = 0, and ϕ(v) = v;

and ϕ ∈ v⊥/Z.v.

Then there exists a smooth elliptic fibration (unique up to toplogical isotopy) π : M → P1

and a diffeomorphism f : M → M such that f is in the class ϕ. Furthermore, f preserves

each fiber of π and f acts by translation on each fiber.

xxxiiiFor q, r ∈ E, declare j(q, r) for the third intersection point of the line qr and E. Then we define

q +p r = j(p, j(q, r)).
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10.6 Anywhere further?

The number 9 is chosen since this is the smallest n2 other than 1 and 4 (which are already

discussed in Seraphina Lee’s lectures). For higher n2, then we will have fibrations by higher

genus surfaces, and we can play with fiberwise maps to build parabolic mapping classes.

Not only the exceptional divisors, the conics also give rise to sections. (Exercise. Why?

Verify.)

For hyperbolic mapping classes, the situation is a bit desperate. Say, can you construct

a diffeomorphism on Bl2(P2) representing a hyperbolic mapping class (in O(1, 2)(Z))?

11 220807-2: Case Study—K3 surfaces

We continue the K3 version of the elliptic fibration story. Recall that the pullback of

π : Bl9(P2)→ P1 along z 7→ z2 map, gives a K3 surface.

Another geometric construct is to start with a blow-up Bl9(P2 \ (disk)), that has an

elliptic fibration. Make another copy, and glue them (along the fibers?).

Let M be a K3 surface. Fix v ∈ HM , v2 = 0. Then we can still construct an exact

sequence

1 v⊥/Z.v StabAut(HM )(v) O(v⊥/Z.v) 1

with v⊥/Z.v = Z20 and O(v⊥/Z.v) = O(2, 18)(Z) this time.

11.1 Summary of what we know

For a K3 surface M , we know that:

• π1M = 0, and there is nowhere vanishing holomorphic 2-form;

• examples of M include Kummer surfaces, smooth quartic surfaces in P3, branched

cover constructions, elliptically fibered examples, . . . ;

• (Kodaira) there is only one diffeomorphic model of M ; and

• the intersection lattice HM = E8(−1)⊕2 ⊕ U⊕3.

By Freedman–Quinn, we have Mod(M) = Aut(HM ) ⊂ O+(3, 19)(R); this can be seen as an

isometry group of nonpositively curved space.

Given ϕ ∈ Mod(M) = O(HM ), we have

• ϕ has finite order (see [Farb–Looijenga] on Nielson realization for K3 surfaces),

• ϕ(v) = v for some v (parabolic; similar to the rational elliptic surface case), and

• ϕ is semisimple and has infinite order (examples from C. McMullen).
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11.2 Finite order

Question 11.1. For which finite order ϕ ∈ Mod(K3) is realizable by a finite group of

diffeomorphisms? Biholomorphisms? Isometry of a Ricci-flat metric (done by Yau)?

Answers to this is all different in this case [Farb–Looijenga]. A caveat is that TS2 is not

realizable for any finite order diffeomorphisms.

Proof idea? Think of the Teichmüller space X of Ricci-flat metrics on a K3 surface.

Equivalently, this is a moduli space of positive definite 3-planes in HM ⊗ R.

Then we have O(3, 19)(R) is the isometry group of the space X. So Mod(K3) = O(HM )

acts isometrically on X.

. . . No. Actually the moduli of positive definite 3-planes has many loci by fixed sets of Refv,

v2 = −2. Away from these loci we have smooth K3 surfaces, but on the loci, we observe

singular K3 surfaces.

There are some ways to view this Teichmüller space. Geometrically, PDE viewpoints,

dynamically, . . . . Further works are needed to understand this space.

11.3 A Dictionary

Table 1 works on the algebraic features of the intersection lattice HM to a geometric feature

of the manifold M . Each line is a very nontrivial fact!
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HM ←→ M Comment

HM = V1 ⊕ V2 M = M1#M2 Freedman

O(HM ) Mod(M) Freedman–Quinn

v ∈ HM Σ ↪→M

Refv, v
2 = −2 TS2 Lefschetz?, Wall

(Below, for K3 surfaces)

v ∈ HM , v2 = 0


a fiber in smooth

elliptic fibration

(∃! up to top. isotopy)

 Farb–Looijenga

U ↪→ HM

hyperbolic lattice

(
elliptic fibration

with section

)
Farb–Looijenga

ϕ ∈ Stab(v), v2 = 0


f ∈ Diff+(M)

preserving

elliptic fibers

 Farb–Looijenga



A ∈ O(HM )

A leaves invar.

some 2-plane P > 0,

not ⊥ to any

(−2)-vector




(∃f)(f∗ = A),

preserves some

complex structure

 Farb–Looijenga;

Torelli Thm.

Table 1: Dictionary of correspondences, π1M = 0
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